Toggle light / dark theme

How morphogens steer early brain development by guiding stem cell gene activity

Just a few weeks after conception, stem cells are already orchestrating the future structure of the human brain. A new Yale-led study shows that, early in development, molecular “traffic cops” known as morphogens regulate the activation of gene programs that initiate stem cells’ differentiation into more specialized brain cells.

The Yale team found that sensitivity to these signaling morphogens can vary not only between stem cells from different donors, but between stem cells derived from the same individual.

“This is a new chapter in understanding how we develop and how development can be influenced by genomic changes between people and by within individuals,” said Flora Vaccarino, the Harris Professor in the Child Study Center at the Yale School of Medicine (YSM) and co-senior author of the research, published in the journal Cell Stem Cell.

FDA-designated orphan drug could increase radiation efficacy in lung cancer

An FDA-designated orphan drug that can target a key vulnerability in lung cancer shows promise in improving the efficacy of radiation treatments in preclinical models, according to a study by UT Southwestern Medical Center researchers. The findings, published in Science Advances, suggest a new way to enhance the response to radiotherapy by inhibiting DNA repair in lung cancer cells.

“This study was motivated by challenges faced by millions of cancer patients undergoing radiation therapy, where treatment-related toxicities limit both curative potential and the patient’s quality of life,” said principal investigator Yuanyuan Zhang, M.D., Ph.D., Assistant Professor of Radiation Oncology and a member of the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Prior research, including from the laboratory of co-investigator Ralph J. DeBerardinis, M.D., Ph.D., Professor and Director of the Eugene McDermott Center for Human Growth and Development, Professor in Children’s Medical Center Research Institute at UT Southwestern, and co-leader of the Cellular Networks in Cancer Research Program in the Simmons Cancer Center, has demonstrated that altered metabolic pathways in allow them to survive, grow, and spread. But the role of metabolism in enhancing radiation efficacy has not been thoroughly explored.

New insight into the neurobiological roots of being a ‘morning person’ or ‘night owl’

Human beings exhibit marked differences in habits, lifestyles and behavioral tendencies. One of these differences, known as chronotype, is the inclination to sleep and wake up early or alternatively to sleep and wake up late.

Changes in society, such as the introduction of portable devices and video streaming services, may have also influenced people’s behavioral patterns, offering them further distractions that could occupy their evenings or late nights. Yet past studies have found that sleeping and waking up late is often linked to a higher risk of being diagnosed with , such as depression and , as well as poorer physical health.

Understanding the neurobiological underpinnings of humans’ chronotypes, as well as the possible implications of being a so-called “morning person” or “night owl,” could thus be beneficial. Specifically, it could inform the development of lifestyle interventions or designed to promote healthy sleeping patterns.

Chimeric brain models can help bridge the gap between animal studies and human neurological disorders

A specialized model used by researchers is becoming a valuable tool for studying human brain development, diseases and potential treatments, according to a team of scientists at Rutgers University-New Brunswick.

Known as chimeric brain models, these laboratory tools provide a unique way to understand human brain functions in a living environment, which may lead to new and better therapies for , researchers said in a review article in Neuron.

Scientists create models by transplanting human brain cells culled from into the brains of animals such as mice, thereby creating a mix of human and animal brain cells in the same brain. This environment is closer to the complexity of a living human brain than what can be simulated in a petri dish study.

Electricity-generating bacteria’s survival strategy could reshape biotech and energy systems

A team led by Rice University bioscientist Caroline Ajo-Franklin has discovered how certain bacteria breathe by generating electricity, using a natural process that pushes electrons into their surroundings instead of breathing on oxygen.

The findings, published in Cell, could enable in clean energy and industrial biotechnology.

By identifying how these bacteria expel electrons externally, the researchers offer a glimpse into a previously hidden strategy of bacterial life. This work, which merges biology with electrochemistry, lays the groundwork for future technologies that harness the unique capabilities of these microscopic organisms.

Gene circuits enable more precise control of gene therapy

Many diseases are caused by a missing or defective copy of a single gene. For decades, scientists have been working on gene therapy treatments that could cure such diseases by delivering a new copy of the missing genes to the affected cells.

Despite those efforts, very few gene therapy treatments have been approved by the FDA. One of the challenges to developing these treatments has been achieving control over how much the new gene is expressed in cells — too little and it won’t succeed, too much and it could cause serious side effects.

To help achieve more precise control of gene therapy, MIT engineers have tuned and applied a control circuit that can keep expression levels within a target range. In human cells, they showed that they could use this method to deliver genes that could help treat diseases including fragile X syndrome, a disorder that leads to intellectual disability and other developmental problems.

Scientists Discover Nature’s Secret to Healthy Longevity

Over the past several decades, human lifespan has steadily increased. However, this progress has also led to a growing proportion of the population suffering from age-related diseases such as cancer, neurodegenerative disorders, and diabetes. Extending both lifespan and healthspan, the period of life spent in good health, requires a deeper understanding of the biological mechanisms that promote healthy aging.

In the natural world, mammalian lifespans vary enormously, ranging from just 1 to 2 years in some rodents to more than a century in species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

/* */