Menu

Blog

Archive for the ‘biotech/medical’ category: Page 365

Aug 30, 2023

Induced Pluripotent Stem Cells For Age-Related Macular Degeneration

Posted by in categories: biotech/medical, life extension

Stem cells can be classified based on their ability to specialize. Totipotent stem cells can become any tissue in the body, pluripotent stem cells can become any cell type except for a complete organ, and multipotent stem cells can only differentiate into specific tissue types.

Induced pluripotent stem cells (iPSCs) show promise in treating retinal degenerative diseases. They are created by reprogramming adult cells using Yamanaka factors, allowing them to revert to an embryonic state. These cells provide a virtually unlimited cell source for research and potential therapies.

Scientists are researching several diseases and drug development applications for these cells, highlighting the characteristics that make them an ideal therapy for macular degeneration.

Aug 30, 2023

Pioneering Single-Pixel Technology Achieves 3D Imaging of Living Cells

Posted by in categories: biotech/medical, futurism

Researchers have pioneered a 3D-SPI method that allows high-resolution imaging of microscopic objects, presenting a transformative approach for future biomedical research and optical sensing.

A research team led by Prof. Lei Gong from the University of Science and Technology (USTC) of the Chinese Academy of Sciences (CAS) and collaborators developed a three-dimensional single-pixel imaging (3D-SPI) approach based on 3D light-field illumination(3D-LFI), which enables volumetric imaging of microscopic objects with a near-diffraction-limit 3D optical resolution. They further demonstrated its capability of 3D visualization of label-free optical absorption contrast by imaging single algal cells in vivo.

The study titled “Optical Single-Pixel Volumetric Imaging by Three-dimensional Light-Field Illumination” was published recently in the journal Proceedings of the National Academy of Sciences (PNAS).

Aug 30, 2023

Scientists find the last remnants of the human genome that were missing in the Y chromosome

Posted by in categories: biotech/medical, genetics, life extension

More than 20 years ago, the human genome was first sequenced. While the first version was full of “holes” representing missing DNA sequences, the genome has been gradually improved in successive rounds. Each has increased the quality of the genome and, in so doing, resolved most of the blank spaces that prevented us from having a complete reading of our genetic material.

The fundamental difficulty researchers faced in reading the from end to end is the enormous number of repeated sequences that populate it. The 20,000 or so genes we humans have occupy barely 2% of the . The remaining 98% is essentially made up of these families of repeated sequences, mobile elements known as transposons and retrotransposons, and—to a lesser but functionally important extent— regulatory sequences. These function as switches that determine when and where genes are turned on and off.

In March 2022, a major revision of the genome was published in the journal Science. An international consortium of researchers known as “T2T” (telomere to telomere, which are the ends of chromosomes) used a novel strategy based a type of cell (CHM13) that retains only one copy of each chromosome.

Aug 30, 2023

In a First, Scientists Fully Wipe a Cell’s Memory Before Turning It Into a Stem Cell

Posted by in categories: biotech/medical, chemistry, genetics

Scientists already have their ways of coaxing human cells into new forms, using a special concoction of chemicals to nudge humble skin cells into malleable tissues known as induced pluripotent stem cells.

In spite of this new lease on life, these particular cells still retain a few genetic reminders of their time as a fully developed tissue, affecting their use as a blank slate.

Now an international team of researchers has gone one better: finding a new way of wiping a cell’s memory clean so it can be better reprogrammed as a stem cell.

Aug 30, 2023

The mechano-chemical circuit drives skin organoid self-organization

Posted by in categories: biotech/medical, chemistry, genetics

Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility–increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell–expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and β1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.

Aug 30, 2023

Get a Wonderful Person Tee

Posted by in categories: biotech/medical, bitcoin, chemistry, cryptocurrencies, quantum physics

More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about bizarre quantum effects discovered in the last few months.
Links:
https://news.uchicago.edu/story/uchicago-scientists-observe-…laboratory.
https://www.nature.com/articles/s41567-023-02139-8
https://www.nature.com/articles/s41586-023-05727-z.
https://www.nature.com/articles/s42005-022-00881-8
#quantum #quantumphysics #quantummechanics.

0:00 Evidence for quantum superchemistry.
3:40 Solar fusion is quantum and not classical.
5:20 Quantum tunneling and microscopy.
7:00 Tunneling causes chemistry.
7:40 Tunneling affects DNA and causes mutation.

Continue reading “Get a Wonderful Person Tee” »

Aug 30, 2023

New Research Sheds Light on the Formation of One of Nature’s Most Fundamental Molecules

Posted by in categories: biotech/medical, genetics, nanotechnology

Life runs on ribosomes. Every cell across the globe requires ribosomes to convert genetic data into the vital proteins required for the organism’s operation, and, subsequently, for the production of more ribosomes. However, scientists still lack a clear understanding of how these essential nanomachines are assembled.

Now, new high-resolution images of the large ribosomal subunit are shedding light on how arguably nature’s most fundamental molecule coalesces in human cells. The findings, published in Science, bring us one step closer to a complete picture of ribosome assembly.

“We now have a pretty good idea of how the large ribosomal subunit is assembled in humans,” says Rockefeller’s Sebastian Klinge. “We still have quite a few gaps in our understanding, but we certainly now have a much better idea than we had before.”

Aug 30, 2023

A dynamic matrix with DNA-encoded viscoelasticity to support the development of organoids and other biological tissues

Posted by in categories: biotech/medical, chemistry

Over the past few decades, material scientists and chemists have been working on designing increasingly sophisticated materials for a wide range of technological and scientific applications. These materials include synthetic polymers and hydrogels that could be introduced inside the human body as part of medical interventions.

Researchers at the Leibniz Institute of Polymer Research Dresden, Technische Universität Dresden and other institutes in Germany recently designed new fully with a dynamic DNA-crosslinked matrix that could prove useful for the creation of organoids (artificial organs) and other bio-mimetic systems. These materials, introduced in Nature Nanotechnology, are versatile, programmable and relatively inexpensive, making them advantageous for medical and biological research.

“Polymer chemistry can create materials with wonderful properties,” Elisha Krieg, one of the researchers who carried out the study, told Phys.org. “Think of everyday products like toys and packaging, but also bullet-proof vests, parachutes, medical implants, etc. But these materials are very static—it is not easy to change their properties, once broken they cannot heal themselves, and their characteristics are difficult to predict. Our group tries to make materials that are more akin to living matter: adaptive, self-healing, and programmed to fulfill specific functions.”

Aug 30, 2023

Regeneron Technology and Spectacular Science

Posted by in categories: biotech/medical, science

Learn about Regeneron’s Spectacular Science and home-grown technologies accelerating drug discovery and development such as VelociGene®, VelociMouse®, VelocImmune® and more.

Aug 30, 2023

Immunotherapy after stem cell transplantation effectively combats certain childhood nerve tumors

Posted by in category: biotech/medical

Scientists at St. Anna Children’s Cancer Research Institute and the Eberhard Karls University of Tübingen have shown that immunotherapy after stem cell transplantation effectively combats certain nerve tumors in children. Crucially, stem cells from a parent provide children with a new immune system that responds much better to immunotherapies. These results of an early clinical trial were published in the prestigious Journal of Clinical Oncology.

Childhood tumors of the nervous system, known as neuroblastomas, are associated with an unfavorable prognosis if the tumor is classified as a high-risk type. The chances are particularly poor for patients in the relapsed stage. In this case, immunotherapy following stem cell transplantation is now associated with long-term survival in a substantial proportion of the patients included in a recent study. Compared to an earlier study the survival rate was increased.

After the transplantation of stem cells from a parent, the patients are equipped with a new immune system. This enables a better immune response to the subsequent immunotherapy and clearly improves the outcome,” explains Prof. Ruth Ladenstein, MD, head of the Studies & Statistics group for Integrated Research and Projects (S2IRP) at St. Anna Children’s Cancer Research Institute and professor at the Department of Pediatrics and Adolescent Medicine at MedUni Vienna, who played a key role as co-first author.

Page 365 of 2,617First362363364365366367368369Last