Menu

Blog

Archive for the ‘biotech/medical’ category: Page 236

Dec 24, 2023

Gravitas: China’s golden veil | Gravitas Shorts

Posted by in categories: biotech/medical, business, military

Chinese researchers have designed a new camouflage device that can make fighter jets appear like civilian planes on radars. Will this change the face of wars?\
\
#china #fighterjet #wion\
\
About Channel: \
\
WION The World is One News examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim is to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to world politics. People are tired of biased reportage and we stand for a globalized united world. So for us, the World is truly One.\
\
Please keep discussions on this channel clean and respectful and refrain from using racist or sexist slurs and personal insults.\
\

Check out our website: http://www.wionews.com\
Join our WhatsApp Channel: https://bit.ly/455YOQ0\
Connect with us on our social media handles:\
Facebook: / wionews \
Twitter: / wionews \
\
Follow us on Google News for the latest updates\
\
Zee News:- https://bit.ly/2Ac5G60\
Zee Business:- https://bit.ly/36vI2xa\
DNA India:- https://bit.ly/2ZDuLRY\
WION: https://bit.ly/3gnDb5J\
Zee News Apps: https://bit.ly/ZeeNewsApps

Dec 24, 2023

Wireless charger that sits under your skin could power medical devices before dissolving into your body

Posted by in categories: biotech/medical, computing

The researchers embedded this prototype in a biodegradable, chip-like implant that combined energy harvesting and energy storage. When the prototype was attached to a medical implant, power passed through the circuit directly to the device and into the capacitor to ensure a constant power supply.

In rats, the wireless implant worked for up to 10 days and dissolved completely within two months — proving its biodegradability. But it could potentially last longer if the team thickened the protective polymer and wax layers encasing the system, Lan said.

The researchers also tested the wireless charger as a drug-delivery system and delivered anti-inflammatory medicine to rats with a fever. After 12 hours, the rats that had no implants had much higher body temperatures than those with the chips, suggesting the device was successfully delivering the medicine.

Dec 24, 2023

Aging is just a disease! | Aubrey de Grey

Posted by in categories: biotech/medical, life extension

Those who will live 1,000 years have already been born! They will not only live long, but will be healthy and active throughout life! This will already be possible in the transition phase of building the Creative Society!

We will talk about it in a live conversation with British biogerontologist Aubrey de Grey.
In this new episode of Health Navigator, you will find out the answers to these questions:

Continue reading “Aging is just a disease! | Aubrey de Grey” »

Dec 24, 2023

Brain distributes signals differently before real and imaginary movement: Study

Posted by in categories: biotech/medical, robotics/AI

Scientists have established how the activity of our brain during imaginary movement differs from that during real action. It turns out that in both cases, a previous signal occurs in the cerebral cortex, but with an imaginary movement, it does not have a clear link to a specific hemisphere.

The obtained data can potentially be used in to create neuro trainers and control the restoration of neural networks in post-stroke patients. The results of the study are published in the journal Cerebral Cortex.

Before we pick up a pen or put down a cup, a complete picture of this action is formed in the . Such visual– transformations ensure the accuracy of our movements. Knowing about these mechanisms helps patients to restore motor activity after strokes. But we don’t always finish the movement we started. In this case, visual information enters the motor areas of the responsible for movement, but the start of the reaction is blocked at some point, and does not end with real muscle activation.

Dec 24, 2023

Researchers develop effective method to genetically modify brain organoids

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Primates are among the most intelligent creatures with distinct cognitive abilities. Their brains are relatively large in relation to their body stature and have a complex structure. However, how the brain has developed over the course of evolution and which genes are responsible for the high cognitive abilities is still largely unclear. The better our understanding of the role of genes in brain development, the more likely it will be that we will be able to develop treatments for serious brain diseases.

Researchers are approaching these questions by knocking out or activating individual genes and thus drawing conclusions about their role in . To avoid as far as possible, brain organoids are used as an alternative. These three-dimensional cell structures, which are only a few millimeters in size, reflect different stages of brain development and can be genetically modified. However, such modifications are usually very complex, lengthy and costly.

Researchers at the German Primate Center (DPZ)—Leibniz Institute for Primate Research in Göttingen have now succeeded in genetically manipulating brain organoids quickly and effectively. The procedure requires only a few days instead of the usual several months and can be used for organoids of different primate species. The brain organoids thus enable of the function of genes at early stages of brain development in primates and help to better understand neurological diseases.

Dec 24, 2023

Looking At CRISPR Therapeutics’s Recent Unusual Options Activity

Posted by in categories: biotech/medical, electronics

Deep-pocketed investors have adopted a bearish approach towards CRISPR Therapeutics CRSP, and it’s something market players shouldn’t ignore. Our tracking of public options records at Benzinga unveiled this significant move today. The identity of these investors remains unknown, but such a substantial move in CRSP usually suggests something big is about to happen.

We gleaned this information from our observations today when Benzinga’s options scanner highlighted 11 extraordinary options activities for CRISPR Therapeutics. This level of activity is out of the ordinary.

The general mood among these heavyweight investors is divided, with 45% leaning bullish and 54% bearish. Among these notable options, 2 are puts, totaling $98,000, and 9 are calls, amounting to $744,659.

Dec 24, 2023

Epidemic Spreading in Multilayer Networks

Posted by in category: biotech/medical

Disease contagion is suppressed when different social groups have a large overlap in membership.

Dec 24, 2023

All-optical object identification and three-dimensional reconstruction based on optical computing metasurface

Posted by in categories: biotech/medical, information science, robotics/AI

As object identification and three-dimensional (3D) reconstruction techniques become essential in various reverse engineering, artificial intelligence, medical diagnosis, and industrial production fields, there is an increasing focus on seeking vastly efficient, faster speed, and more integrated methods that can simplify processing.

In the current field of object identification and 3D , extracting sample contour information is primarily accomplished by various computer algorithms. Traditional computer processors suffer from multiple constraints, such as high-power consumption, low-speed operation, and complex algorithms. In this regard, there has recently been growing attention in searching for alternative to perform those techniques.

The development of optical computing theory and has provided a more complete theoretical basis for object identification and 3D reconstruction techniques. Optical methods have received more attention as an alternative paradigm than traditional mechanisms in recent years due to their enormous advantages of ultra-fast operation speed, high integration, and low latency.

Dec 24, 2023

Brain Evolution Unlocked: Over 100 Genes That Make Us Uniquely Human

Posted by in categories: biotech/medical, evolution, neuroscience

The researchers found 139 genes that are common across the primate groups but highly divergent in their expression in human brains.

An international team led by researchers at the University of Toronto has uncovered over 100 genes that are common to primate brains but have undergone evolutionary divergence only in humans – and which could be a source of our unique cognitive ability.

The researchers, led by Associate Professor Jesse Gillis from the Donnelly Centre for Cellular and Biomolecular Research and the Department of Physiology at U of T’s Temerty Faculty of Medicine, found the genes are expressed differently in the brains of humans compared to four of our relatives – chimpanzees, gorillas, macaques, and marmosets.

Dec 24, 2023

Bioengineers building the intersection of organoids and AI with ‘Brainoware’

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Feng Guo, an associate professor of intelligent systems engineering at the Indiana University Luddy School of Informatics, Computing and Engineering, is addressing the technical limitations of artificial intelligence computing hardware by developing a new hybrid computing system—which has been dubbed “Brainoware”—that combines electronic hardware with human brain organoids.

Advanced AI techniques, such as and , which are powered by specialized silicon computer chips, expend enormous amounts of energy. As such, engineers have designed neuromorphic computing systems, modeled after the structure and function of a human brain, to improve the performance and efficiency of these technologies. However, these systems are still limited in their ability to fully mimic brain function, as most are built on digital electronic principles.

In response, Guo and a team of IU researchers, including graduate student Hongwei Cai, have developed a hybrid neuromorphic computing system that mounts a brain organoid onto a multielectrode assay to receive and send information. The brain organoids are brain-like 3D cell cultures derived from and characterized by different brain cell types, including neurons and glia, and brain-like structures such as ventricular zones.

Page 236 of 2,637First233234235236237238239240Last