Toggle light / dark theme

Ultrasound-activated cilia can clean implanted stents and catheters

Urinary stents and catheters are implanted medical tubes that are widely used in human and veterinary medicine to drain urine to/from the bladder. Ureteral stents are used when the ureter, the duct between the kidney and bladder, is blocked by tumors, pregnancy, stones or anatomical narrowing.

Biofilm, produced by bacteria, and crystalline deposits, called encrustation, grow on the inner and outer walls of such stents and catheters soon after implantation and are among the main causes of failure of these devices because they lead to painful blockages and urinary infections.

To mitigate these issues, urinary stents and catheters therefore must be replaced every two to six months, which not only considerably restricts the quality of life of those affected but also leads to high hospital load and costs.

Computational analysis clarifies cancer risk for families with genetic variants

QIMR Berghofer-led research has shown that new advanced computational prediction tools can improve the accuracy of genetic testing for families affected by an inherited condition that significantly increases their risk of developing cancer, paving the way to better targeted care.

The findings have been published in the American Journal of Human Genetics alongside complementary studies by international collaborators, which together show how incorporating the new computational biology tools with existing modeling methods improved the predictive power of genetic test results.

Computational tools are used to predict if and how a genetic is likely to impact the function of the protein encoded by the gene.

Novel CAR-T therapy achieves positive results in a high proportion of patients with a refractory type of lymphoma

Researchers from the Sant Pau Research Institute (IR Sant Pau), in collaboration with Sant Pau Hospital and the Josep Carreras Leukemia Research Institute, have developed an innovative CAR-T cell therapy targeting the CD30 protein (HSP-CAR30), which has shown high efficacy in patients with refractory CD30+ lymphoma.

A Phase I clinical trial, whose results have been published in the journal Blood, reveals that this new CAR-T30 therapy promotes the expansion of memory T cells, leading to long-lasting responses and improved clinical outcomes in treated patients.

Hodgkin and other CD30+ lymphomas have posed a significant challenge to the medical community, particularly in refractory or relapsed cases where conventional treatments have so far shown limited efficacy.

Overcoming the quantum sensing barrier: New protocol counteracts the limitation of decoherence

Researchers have demonstrated a new quantum sensing technique that widely surpasses conventional methods, potentially accelerating advances in fields ranging from medical imaging to foundational physics research, as shown in a study published in Nature Communications.

For decades, the performance of quantum sensors has been limited by decoherence, which is unpredictable behavior caused by environmental noise.

“Decoherence causes the state of a quantum system to become randomly scrambled, erasing any quantum sensing signal,” said Eli Levenson-Falk, senior author of the study, associate professor of physics and astronomy at the USC Dornsife College of Letters, Arts and Sciences and associate professor of electrical and computer engineering at the USC Viterbi School of Engineering.

Molecule can disarm pathogenic bacteria without harming beneficial microbes

A consortium of researchers with multidisciplinary skills, coordinated by INRAE and including the CNRS, the Université Paris-Saclay and Inserm, has identified a molecule capable of “disarming” pathogenic bacteria in the face of the immune system, without any negative effects on the host microbiota, promising a new strategy to combat antibiotic resistance.

These results, already patented and recently published in Nature Communications, are leading to the development of new drugs.

Antibiotic resistance is a major public health issue. According to the WHO, 5 million people die every year worldwide as a result of . This could become the leading cause of death by 2050.

Hormone supplementation in rhesus monkeys points to potential autism treatment

For years, Florida Tech’s Catherine Talbot, an assistant professor of psychology, has worked to understand the sociality of male rhesus monkeys and how low-social monkeys can serve as a model for humans with autism. Her most recent findings show that replenishing a deficient hormone, vasopressin, helped the monkeys become more social without increasing their aggression—a discovery that could change autism treatment.

Currently, the Centers for Disease Control and Prevention reports that one in 36 children in the United States is affected by autism spectrum disorder (ASD). That’s an increase from one in 44 children reported in 2018. Two FDA-approved treatments currently exist, Talbot said, but they only address associated symptoms, not the root of ASD. The boost in both prevalence and awareness of the disorder prompts the following question: What is the cause?

Some are naturally low-social, meaning they demonstrate poor social cognitive skills, while others are highly social. Their individual variation in sociality is comparable to how human sociality varies, ranging from people we consider social butterflies to those who are not interested in social interactions, similar to some people diagnosed with ASD, Talbot said. Her goal has been to understand how variations in biology and behavior influence social cognition.

/* */