Toggle light / dark theme

Ribonucleic acid (RNA) is a vital biological molecule that plays a significant role in the genetics of organisms and is essential to the origin and evolution of life. Structurally similar to DNA, RNA carries out various biological functions, largely determined by its spatial conformation, i.e. the way the molecule folds in on itself.

Now, a paper published in the journal Proceedings of the National Academy of Sciences (PNAS) describes for the first time how the process of RNA folding at low temperatures may open up a novel perspective on primordial biochemistry and the evolution of life on the planet.

The study is led by Professor Fèlix Ritort, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology (IN2UB) of the University of Barcelona, and is also signed by UB experts Paolo Rissone, Aurélien Severino, and Isabel Pastor.

Last month, a team from North Carolina State University and Johns Hopkins University found a workaround. They embedded DNA molecules, encoding multiple images, into a branched gel-like structure resembling a brain cell.

Dubbed “dendricolloids,” the structures stored DNA files far better than those freeze-dried alone. DNA within dendricolloids can be repeatedly dried and rehydrated over roughly 170 times without damaging stored data. According to one estimate, each DNA strand could last over two million years at normal freezer temperatures.

Unlike previous DNA computers, the data can be erased and replaced like memory on classical computers to solve multiple problems—including a simple chess game and sudoku.

The FDA approved amivantamab-vmjw in combination with standard chemotherapy for the treatment of certain adults with non-small cell lung cancer, according to the agent’s manufacturer.

The indication applies to adults with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or L858R substitution mutations whose disease progressed on or following treatment with an EGFR tyrosine kinase inhibitor.

Amivantamab-vmjw (Rybrevant, Janssen) is an EGFR and mesenchymal epithelial transition (MET) factor bispecific antibody that targets activating and resistant EGFR and MET mutations and amplifications.

Four years after being functionally cured of sickle cell disease with a CRISPR gene-editing therapy, Jimi Olaghere has set a new world record for patients with this chronic and deadly disease.

Olaghere, a 39-year-old business owner from Atlanta, became the world’s first patient with sickle cell disease to reach the summit of Kilimanjaro at 7:30 am Tanzania time on Sept. 16. It’s the highest peak in Africa at 19,341 feet above sea level.

Neurotech company Synchron has been making massive strides over the past couple of years. It’s just announced that a trial participant has used its brain-computer interface (BCI) to turn on the lights in his home, see who is at the door, and choose what to watch on the TV – hands-free and without even a voice command.

That’s thanks to Synchron’s interface translating his thoughts into commands relayed to Amazon’s Alexa service. The virtual assistant is set up on his tablet and connected to his smart home devices. The trial participant, who is living with amyotrophic lateral sclerosis (ALS) and can’t use his hands, can simply think about navigating through options displayed on the tablet to engage them.

A ‘Stentrode’ embedded in a blood vessel on the surface of his brain houses electrodes that detect motor intent. The participant uses his thoughts to select which tiles to press on the interface and perform actions via Alexa. Watch him use the system in the video below.

In recent years, these technological limitations have become far more pressing. Deep neural networks have radically expanded the limits of artificial intelligence—but they have also created a monstrous demand for computational resources, and these resources present an enormous financial and environmental burden. Training GPT-3, a text predictor so accurate that it easily tricks people into thinking its words were written by a human, costs $4.6 million and emits a sobering volume of carbon dioxide—as much as 1,300 cars, according to Boahen.

With the free time afforded by the pandemic, Boahen, who is faculty affiliate at the Wu Tsai Neurosciences Institute at Stanford and the Stanford Institute for Human-Centered AI (HAI), applied himself single mindedly to this problem. “Every 10 years, I realize some blind spot that I have or some dogma that I’ve accepted,” he says. “I call it ‘raising my consciousness.’”

This time around, raising his consciousness meant looking toward dendrites, the spindly protrusions that neurons use to detect signals, for a completely novel way of thinking about computer chips. And, as he writes in Nature, he thinks he’s figured out how to make chips so efficient that the enormous GPT-3 language prediction neural network could one day be run on a cell phone. Just as Feynman posited the “quantum supremacy” of quantum computers over traditional computers, Boahen wants to work toward a “neural supremacy.”