Toggle light / dark theme

From the article:

Ceyda Sayali, a cognitive neuroscientist at the Center for Psychedelic and Consciousness Research at Johns Hopkins University who was not involved with the study, said she was struck by the images that showed a marked change when participants on psilocybin were asked to answer…


A small new study shows reactions in the brain in people who were given psilocybin in a controlled setting.

By Ariana Mendible

For the past several years, I have been closely involved with the Institute for the Quantitative Study of Inclusion, Diversity and Equity (QSIDE). This nonprofit organizes events and facilitates research in quantitative justice, the application of data and mathematical sciences to quantify, analyze and address social injustice. It uses the community-based participatory action research model to connect like-minded scholars, community partners, and activists together. Recently, QSIDE researchers met virtually in a Research Roundup to share our progress. Hearing all the incredible work that QSIDE has spawned and supported prompted me to reflect on the role that the group has played in my budding career and the ways in which the institute itself has grown since its founding in 2019.

Like many PhD candidates, my final year of graduate school was rife with burnout and uncertainty about post-graduation plans. Add to this mix a global pandemic, social isolation, and confinement to the same one-bedroom dwelling for the last year plus and you get a stew of anxiety. I was approaching my mental limit on the research I had been conducting, somewhere at the intersection of data science and fluid dynamics. While the problem I had been working on for my thesis was interesting, I was ready for a major change. I couldn’t picture myself in the usual post-graduate tracks: a post-doc at an R1 institution or working for a Big Tech company. These careers felt hyper-competitive, a turn-off during a period of significant burnout. I also couldn’t see their direct positive impact, which felt acutely important in this time of global social disarray.

Thin lips are a common cosmetic concern for people with scleroderma – and can impact a patient’s ability to chew, swallow, and sleep.

Writing in the Journal of the American Academy of Dermatology, a YSM team finds hyaluronic acid lip fillers are a safe and effective option.


Hyaluronic acid lip fillers are safe and effective for patients with systemic sclerosis, or scleroderma, a new Yale study finds.

Thin lips are not only a common cosmetic concern in patients with scleroderma, a condition that involves tightening and hardening of the skin among other effects on internal organs, but also can impact a person’s ability to chew, swallow, and sleep. In addition, the condition can be stigmatizing and have significant psychosocial impacts. Although hyaluronic acid fillers are commonly used in the restoration of lip volume, they have not been used routinely in patients with the disease due to concerns of worsening the autoimmune condition.

Bioelectrical signaling in the African clawed frog modulates both resistance to infection and tail regeneration. Michael Levin at Tufts University in Massachusetts, USA, and colleagues have used genetic technologies and drug treatments to manipulate the bioelectrical properties of tissues in frog embryos. Reducing the electric gradient between the inside and outside of cells (depolarization) increased the embryos’ survival rate to bacterial infection, whereas increasing the resting potential (hyperpolarization) had the opposite effect. The authors found that serotonergic signaling and an increase in the number of myeloid cells underpin depolarization-induced immunity. Interestingly, embryos undergoing tail regeneration, which triggers depolarization, also showed increased resistance to infection.

Researchers at the University of Bayreuth have developed a new method for controlling the growth of physical micro-runners. They used an external magnetic field to assemble paramagnetic colloidal spheres—i.e. only magnetic due to external influences—into rods of a certain length. Colloidal particles are tiny particles in the micro-or nanometer range that can be used in medicine as carriers of biochemicals.