Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1723

Oct 9, 2019

Cervical cancer ‘cure’ closer with gene-editing breakthrough, scientists say

Posted by in categories: bioengineering, biotech/medical, genetics

Queensland researchers say they can cure cervical cancer in mice using gene editing technology and are now working towards human trials.

Oct 9, 2019

Klotho: Queen of Anti-Aging Proteins

Posted by in categories: biotech/medical, life extension, neuroscience

Klotho, named after one of the Fates of Greek mythology, is the queen of anti-aging proteins. There are no close contenders at this time. Klotho gene therapy, like the one offered by Integrated Health Systems, has tremendous benefits. While it is produced primarily in the kidneys and brain, its soluble form circulates throughout the body. Many of the investigations so far have been done nephrologists interested in its prominent role in Chronic Kidney Disease (CKD), yet over the last decade its multifaceted role in the aging process has become a topic of intense research.

Klotho deficient mice show premature aging in multiple organs.

Inducing KL overexpression with a viral vector, like AAV, not only reverses this premature aging, but also enhances resistance to oxidative and ischemic damage. More impressive, KL outright extends the lifespans of mice, likely be inhibiting IGF and insulin signalling. Dubbed an “aging suppressor gene,” it can yield results similar to caloric restriction – what is, at this time, the most tried and true method of extending the lifespans of a variety of model organisms.

Oct 8, 2019

Germ transplant helps women with tough-to-treat vaginal infections

Posted by in category: biotech/medical

Bacterial vaginosis is a common infection in women that’s usually easily treated with antibiotics. But for those who develop recurrent infections, treatment options have been limited.

Now, Israeli researchers report they were able to put recurrent infections into remission in four out of five women who received a “vaginal microbiome transplant.” The transplant consisted of healthy bacteria collected from the vaginal fluid of donors without the condition, the researchers explained.

“Bacterial vaginosis, while not life-risking, is an exceedingly common female disorder that bears a severe toll on women’s lives, including severe discomfort, reduced , problems in , social segregation and a variety of risks of developing infectious gynecological and obstetric complications,” said the study’s senior author, Dr. Eran Elinav.

Oct 8, 2019

Expert: “Zombie Deer Disease” May Have Already Spread to Humans

Posted by in category: biotech/medical

This could be “mad cow disease” all over again.

Oct 8, 2019

A DNA Switch for Whole-body Regeneration

Posted by in categories: biotech/medical, life extension

When it comes to regeneration, some animals are capable of amazing feats — if you cut the leg off a salamander, it will grow back. When threatened, some geckos drop their tails as a distraction, and regrow them later.

Other animals take the process even further. Planarian worms, jellyfish, and sea anemones can actually regenerate their entire bodies after being cut in half.

Led by Assistant Professor of Organismic and Evolutionary Biology Mansi Srivastava, a team of researchers is shedding new light on how animals pull off the feat, and uncovered a number of DNA switches that appear to control genes for whole-body regeneration. The study is described in a March 15 paper in Science.

Oct 8, 2019

Discover how scientists are developing a new gene therapy that could defeat age-related diseases and how you can help them do it!

Posted by in categories: biotech/medical, life extension

Check out: https://www.lifespan.io/mitomouse

Oct 8, 2019

An Interview with Dr. Amutha Boominathan

Posted by in categories: biotech/medical, genetics, life extension

We recently had the opportunity to interview Dr. Amutha Boominathan from the SENS Research Foundation, at the Ending Age-Related Diseases 2019 conference about her research on mitochondrial repair therapies, the value of animal models, and her views on the future of aging research.

Dr. Amutha Boominathan received both her MSc and her PhD in Biochemistry from the University of Pune and the National Chemical Laboratory in India, respectively. She went on to do postdoctoral work in the U.S. relating to mitochondrial biogenesis at U. Penn and Rutgers University. She has extensively studied mechanisms of fusion and fission in mitochondria, Fe-S cluster biosynthesis, and protein import into mitochondria as part of her postdoctoral fellowship with the American Heart Association.

Currently, Amutha leads the MitoSENS program at SENS Research Foundation in Mountain view, California. Her research group is focusing on understanding mitochondrial DNA (mtDNA) mutations and restoring lost functionality as a result of these mutations by way of the allotopic expression of mitochondrial genes. Inherited mtDNA mutations can result in severe and debilitating diseases, such as NARP, Leigh’s syndrome and MELAS. Even in otherwise healthy individuals, mtDNA mutations accumulate with age. The MitoSENS team has already succeeded in stably expressing the ATP8 gene using their method and is looking forward to tackling each of the 13 mitochondrial protein genes in the coming years. Its goal is to develop safe and effective gene therapies for mitochondrial dysfunction.

Oct 7, 2019

Help to Crowdfund the SENS Research Foundation Transgenic Mouse Project to Move a Mitochondrial Gene into the Cell Nucleus

Posted by in categories: biotech/medical, genetics, life extension

The SENS Research Foundation science team is taking the next step in their work on moving mitochondrial genes into the cell nucleus, a process called allotopic expression. Having proven that they can carry out this task with the ATP8 gene in cells, they are now aiming at proof of principle in mice. This will require the production of transgenic mice, using a novel technology funded by the SENS Research Foundation called the maximally modifiable mouse. This mitochondrial project is being crowdfunded at Lifespan.io: you, I, and everyone else can contribute to advancing the state of the art one step further towards eliminating mitochondrial DNA damage as a cause of aging.

Mitochondria are the power plants of the cell, a herd of organelles descended from ancient symbiotic bacteria. They reproduce by replication and are recycled when damaged by cellular maintenance processes. Mitochondria carry the remnant of the original bacterial DNA, encoding thirteen genes vital to the process by which mitochondria package chemical energy store molecules. Unfortunately mitochondria generate reactive molecules as a byproduct of their operation, and this DNA is less well protected than the DNA of the cell nucleus. Some forms of damage to this DNA can break mitochondrial function in ways that allow the broken mitochondria to outcompete their functional peers, leading to dysfunctional cells that export massive quantities of damaging, oxidative molecules into the surrounding tissue. This contributes to conditions such as atherosclerosis, via the production of significant amounts of oxidized cholesterol in the body.

Allotopic expression of mitochondrial genes will work around this issue by providing a backup source of the proteins necessary to mitochondrial function. It has been demonstrated to work for ND4, and that project has been running for some years at Gensight Biologics to produce a therapy for inherited conditions that involve mutation of that gene. This work must expand, however, to encompass all thirteen genes of interest. So lend a hand, and help the SENS Research Foundation team take the next step forward in this process.

Oct 7, 2019

Mayo Clinic Showcases Anti-Aging Senolytics

Posted by in categories: biotech/medical, life extension

Flushing harmful zombie senescent cells from the body that have become old, fatigued and have ceased to divide has become one of the more prominent proposals in the anti-aging sphere. The hypothesis has generated a stream of animal data to support the theory, and now the Mayo Clinic has results from a human study that suggests they have found drugs that can do the same.

While the main goal of the Phase I trail was not to show the effects of reducing senescent cells in the body the researchers were eager to show that the anti-aging senolytics that were tested in animal studies can work the same way in humans as “so far, there has been no direct demonstration of senescent cell clearance by senolytic drugs in peer-reviewed published human clinical trials,” the authors wrote in EBioMedicine, despite the publication of the first human data in January.

Dasatinib and quercetin were given to 9 patients with diabetes related chronic kidney disease for 3 days in this trial. The drugs cleared participants systems in a matter of a few days, but the effects persisted and the authors reported, “Key markers of senescent cell burden were decreased in adipose tissue and skin biopsied from subjects 11 days after completing the 3-day course of D + Q, as were key circulating SASP factors, compared to before administration of these senolytic drugs.”

Oct 7, 2019

The DNA clouds that shield unkillable tardigrades from radiation

Posted by in categories: biotech/medical, space

It takes something truly extraordinary, like maybe the death of the Sun, to kill the near-indestructible invertebrate known as the tardigrade. Crash-landings on the Moon, a lack of oxygen and conditions in the darkest corners of the ocean don’t appear pose a threat to this critter’s livelihood. Scientists studying these so-called water bears have uncovered a neat trick they employ to endure inhospitable conditions, using a unique protein to generate protective clouds around their DNA.

Tardigrades measure no more than a millimeter long, but possess an indomitability that would make even nature’s largest and hardiest creatures jealous. Key to their survival is an ability to enter a suspended and extremely dehydrated state of being called anhydrobiosis, in which their metabolism is put on hold until the surrounding conditions are more favorable to a regular life.

This capability has seen tardigrades endure temperatures as high as 150º C (302º F) and as low as −272º C (−457.6º F). It has seen them studied in the vacuum of space and exist amongst intense pressures at the bottom of the ocean. When an Israeli spacecraft carrying tardigrades crash-landed on the Moon in August, it inspired some dramatic headlines around the possibility of the near-indestructible creatures colonizing Earth’s only natural satellite.