Toggle light / dark theme

Now, Tejada-Martinez and her colleagues have studied the evolution of 1077 tumour suppressor genes (TSGs). In all, they compared the evolution of the genes in 15 mammalian species, including seven cetacean species.

Genes regulating DNA damage, tumour spread and the immune system were positively selected among the cetaceans. The team also found that cetaceans gained and lost TSGs at a rate 2.4 times higher than in other mammals.

It’s not like we’re gonna be taking whale genes and putting them into humans and making humans cancer resistant, says Lynch. But if you can find the genes that play a role in tumour suppression in other animals, and if you could figure out what they’re doing, maybe you can make a drug that mimics that for human treatment…

National Academies study says fusion can help decarbonize US energy, calls for public-private approach to pilot plant operation by 2035–40.

Electricity generated by fusion power plants could play an important role in decarbonizing the U.S. energy sector by mid-century, says a new consensus study report from the National Academies of Sciences, Engineering, and Medicine, which also lays out for the first time a set of technical, economic, and regulatory standards and a timeline for a U.S. fusion pilot plant that would begin producing energy in the 2035–40 time frame.

To achieve this key step toward commercialization, the report calls for an aggressive public-private effort to produce by 2028 a pilot plant design that can, when built, accommodate any of the developmental approaches seeking to realize fusion’s potential as a safe, carbon-free, on-demand energy source.

This list marks 20 years since we began compiling an annual selection of the year’s most important technologies. Some, such as mRNA vaccines, are already changing our lives, while others are still a few years off. Below, you’ll find a brief description along with a link to a feature article that probes each technology in detail. We hope you’ll enjoy and explore—taken together, we believe this list represents a glimpse into our collective future.

Engineers at the University of California San Diego have developed a soft, stretchy skin patch that can be worn on the neck to continuously track blood pressure and heart rate while measuring the wearer’s levels of glucose as well as lactate, alcohol, or caffeine. It is the first wearable device that monitors cardiovascular signals and multiple biochemical levels in the human body at the same time.

“This type of wearable would be very helpful for people with underlying medical conditions to monitor their own health on a regular basis,” said Lu Yin, a nanoengineering Ph.D. student at UC San Diego and co-first author of the study published on February 152021, in Nature Biomedical Engineering. “It would also serve as a great tool for remote patient monitoring, especially during the COVID-19 pandemic when people are minimizing in-person visits to the clinic.”

Such a device could benefit individuals managing high blood pressure and diabetes — individuals who are also at high risk of becoming seriously ill with COVID-19. It could also be used to detect the onset of sepsis, which is characterized by a sudden drop in blood pressure accompanied by a rapid rise in lactate level.

Robots that could take on basic healthcare tasks to support the work of doctors and nurses may be the way of the future. Who knows, maybe a medical robot can prescribe your medicine someday? That’s the idea behind 3D structural-sensing robots being developed and tested at Simon Fraser University by Woo Soo Kim, associate professor in the School of Mechatronic Systems Engineering.