Toggle light / dark theme

Researchers create molecular device that can record and alter cells’ bioelectric fields without creating damage

Bioelectricity, the current that flows between our cells, is fundamental to our ability to think and talk and walk.

In addition, there is a growing body of evidence that recording and altering the bioelectric fields of cells and tissue plays a vital role in and even potentially fighting diseases like cancer and heart disease.

Now, for the first time, researchers at the USC Viterbi School of Engineering have created a molecular device that can do both: Record and manipulate its surrounding bioelectric field.

AI-powered transcription platform DeepScribe raises $30M to unburden doctors from tedious data entry

DeepScribe, an AI-powered medical transcription platform, has raised $30 million in Series A funding led by Nina Achadjian at Index Ventures, with participation from Scale.ai CEO Alex Wang, Figma CEO Dylan Field and existing investors Bee Partners, Stage 2 Capital and 1984 Ventures. The company’s latest round of funding follows its $5.2 million seed round announced in May 2021. DeepScribe was founded in 2017 by Akilesh Bapu, Matthew Ko and Kairui Zeng with the aim of unburdening doctors from tedious data entry and allowing them to focus on their patients.

In 2019, DeepScribe launched its ambient voice AI technology that summarizes natural patient-physician conversations. The idea for DeepScribe was prompted by Bapu and Ko’s own experiences. Bapu’s father was an oncologist and he saw the toll that documentation had on his father’s work/life balance. On the other hand, Ko saw how the burden of clinical documentation was impacting patients’ perception of care when he was the care coordinator for his mother when she was diagnosed with breast cancer.

After being frustrated with the care his mother was receiving, Ko turned to Bapu and his father for help. The pair then began to understand the importance of clinical documentation and realized that recent breakthroughs in artificial intelligence and natural language processing were not being used to remedy the situation. They then decided to create a platform that would address the problem.

Robotic exoskeleton gives prosthetic legs a power boost

University of Utah engineers have built a robotic exoskeleton that gives people with prosthetic legs a power boost that makes walking less difficult.

“It’s equivalent to taking off a 26-pound backpack [while walking],” lead researcher Tommaso Lenzi said in a press release. “That is a really big improvement.”

The challenge: About 220,000 people in the U.S. have had above-knee amputations, meaning their leg was amputated somewhere between the knee and hip.

Mike West on human cellular reprograming and rejuvenation (con S/T en Español)

Excerpt from an interview made by James Ruhle, founder at Simple Biotech, to Michael (Mike) West, founder and CEO of AgeX Therapeutics.

During this 4 minute excerpt, Mike explains in a nutshell the work he and his team at AgeX are doing “to reverse the aging of cells and tissues in the body in the truest and fullest sense of the work”, and clarifies the reasons why it doesn’t mean to convert and adult into a child.

To watch the entire interview clic here: https://youtu.be/nv3DYGw5iVM

Raspberry Pi system can detect viruses on other devices without use of software

A team of researchers at the Institute of Computer Science and Random Systems has built a non-software-based virus detection system using a Raspberry Pi, an H-field probe and an oscilloscope to detect electromagnetic wave signatures of multiple types of viruses. The team presented its system and test results at last month’s ACM Machinery’s Annual Computer Security Applications Conference and published a paper describing their system on ACM’s Research Article page.

The idea behind the new system is that running software generates electromagnetic waves. And each piece of software generates its own unique wave patterns due to the way the software executes its code. The researchers took advantage of this knowledge and began using an H-field probe to capture wave patterns of known computer viruses running on various devices and viewed the results on an oscilloscope. They saw oscilloscope patterns that were unique to individual viruses as they were running. The researchers used that information to program a Raspberry Pi to identify data from the other two devices to recognize known virus wave patterns, using the system as a virus detector. To determine if a virus is running on a computer, IoT device or smartphone, a user places the H-field probe close enough to the device to read the electromagnetic waves that are generated. The Raspberry Pi then reports on whether it found any viruses, and if so, which ones.