Toggle light / dark theme

Visual Mental Imagery: A Patient Case Suggests a New Key Brain Network

Summary: Researchers identified a novel brain network that includes the fronto-parietal networks and fusiform gyrus which helps with the encoding of visual mental imagery.

Source: Paris Brain Institute.

Every day, we call upon a unique capacity of our brain, visual mental imagery, which allows us to visualize images, objects or people ‘in our heads’. Based on the recent case of a patient with a specific brain lesion, Paolo Bartolomeo’s group (Inserm) in the PICNIC Lab at the Paris Brain Institute has identified a region that may be key in mental visualization.

New health research suggests novel combination therapy for triple-negative breast cancer

Research led by Suresh Alahari, Ph.D., Professor of Biochemistry at LSU Health New Orleans schools of Medicine and Graduate Studies, suggests a combination of drugs already approved by the FDA for other cancers may be effective in treating chemo-resistant triple-negative breast cancer. The results are published in Molecular Cancer.

Triple-negative breast cancer (TNBC) tumors lack estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). A subtype representing 12–55% of tumors has androgen receptors (AR). Since stimulate tumor cell progression in estrogen receptor-negative breast cancers, they have become a target of triple-negative breast cancer therapy. As well, since a substantial number of patients with triple-negative breast cancer develop resistance to paclitaxel, the FDA-approved chemotherapeutic agent for triple-negative breast cancer, new therapeutic approaches are needed.

Working in a mouse model and tissue from patients with triple-negative breast cancer, the research team screened 133 FDA-approved drugs that have a therapeutic effect against androgen receptor cells. They found that ceritinib, an FDA-approved drug for lung cancers, efficiently inhibited the growth of androgen receptor triple-negative breast cancer cells. To improve the response, they also selected enzalutamide, an FDA-approved androgen receptor antagonist for prostate cancer treatment.

CEO test-drives Mojo Vision’s smart augmented reality contact lens

Forget your bulky AR headsets, smart contact lenses are coming to place augmented reality displays right there on your eyeball. Last week, Mojo Vision CEO Drew Perkins volunteered to test the first feature-complete prototype of his company’s design.

Smart wearables are all about super-portable convenience, and until scientists can plumb an AR display directly into your visual cortex, the smallest and most portable form factor we can imagine is that of a contact lens. Mojo Vision has been working on a smart contact lens design since 2015, and its latest prototype Mojo Lens packs in a pretty impressive amount of gear – especially for something that has to live behind your eyelid.

For starters, it has the world’s smallest and highest-density display capable of showing dynamic content – a green monochrome MicroLED display measuring less than 0.5 mm (0.02 in) in diameter, with a resolution of 14,000 pixels per inch. It’s got an ARM Core M0 processor, a 5-GHz radio capable of communicating at ultra-low latency, and enough accelerometers, gyroscopes and magnetometers to track your eye movements with extreme precision, allowing the image to stay stable even as you move your eyes around.

Blockchain not just for bitcoin. It can secure and store genomes too

Blockchain is a digital technology that allows a secure and decentralized record of transactions that is increasingly used for everything from cryptocurrencies to artwork. But Yale researchers have found a new use for blockchain: they’ve leveraged the technology to give individuals control of their own genomes.

Their findings are published June 29 in the journal Genome Biology.

“Our primary goal is to give ownership of genomic data back to the individual,” said senior author Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics and professor of molecular biophysics and biochemistry, of computer science, and of statistics and .

Laser writing may enable ‘electronic nose’ for multi-gas sensor

Environmental sensors are a step closer to simultaneously sniffing out multiple gases that could indicate disease or pollution, thanks to a Penn State collaboration. Huanyu “Larry” Cheng, assistant professor of engineering science and mechanics in the College of Engineering, and Lauren Zarzar, assistant professor of chemistry in Eberly College of Science, and their teams combined laser writing and responsive sensor technologies to fabricate the first highly customizable microscale gas sensing devices.

They published their technique this month in ACS Applied Materials & Interfaces.

“The detection of gases is of critical importance to various fields, including pollution monitoring, public safety assurance and personal health care,” Cheng said. “To fill these needs, sensing devices must be small, lightweight, inexpensive and easy to use and apply to various environments and substrates, such as clothing or piping.”

A spatiotemporal model of firearm ownership in the United States

This study explores the relationship between the adoption of industrial robots and workplace injuries using data from the United States (US) and Germany. Our empirical analyses, based on establishment-level data for the US, suggest that a one standard deviation increase in robot exposure reduces work-related injuries by approximately 16%. These results are driven by manufacturing firms (−28%), while we detect no impact on sectors that were less exposed to industrial robots. We also show that the US counties that are more exposed to robot penetration experience a significant increase in drug-or alcohol-related deaths and mental health problems, consistent with the extant evidence of negative effects on labor market outcomes in the US. Employing individual longitudinal data from Germany, we exploit within-individual changes in robot exposure and document similar effects on job physical intensity (−4%) and disability (−5%), but no evidence of significant effects on mental health and work and life satisfaction, consistent with the lack of significant impacts of robot penetration on labor market outcomes in Germany.

Human Urine-Derived Stem Cells Have Robust Regenerative Potential

Summary: Stem cells in human urine have the potential to regenerate tissue.

Source: wake forest baptist medical center.

The Wake Forest Institute for Regenerative Medicine (WFIRM) researchers who were the first to identify that stem cells in human urine have potential for tissue regenerative effects, continue their investigation into the power of these cells.

Using colloidal nanodiscs for 3D bioprinting tissues and tissue models

Extrusion-based 3D printing/bioprinting is a promising approach to generating patient-specific, tissue-engineered grafts. However, a major challenge in extrusion-based 3D printing and bioprinting is that most currently used materials lack the versatility to be used in a wide range of applications.

New nanotechnology has been developed by a team of researchers from Texas A&M University that leverages colloidal interactions of nanoparticles to print complex geometries that can mimic tissue and organ structure. The team, led by Dr. Akhilesh Gaharwar, associate professor and Presidential Impact Fellow in the Department of Biomedical Engineering, has introduced colloidal solutions of 2D nanosilicates as a platform technology to print complex structures.

2D nanosilicates are disc-shaped inorganic nanoparticles 20 to 50 nanometers in diameter and 1 to 2 nanometers in thickness. These nanosilicates form a “house-of-cards” structure above a certain concentration in water, known as a colloidal solution.

RNA modifications in mitochondria promote invasive spread of cancer

Mitochondria are the power plants of cells, and they contain their own genetic material and RNA molecules. Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now discovered that certain modifications in mitochondrial RNA boost the invasive spread of cancer cells by supporting protein synthesis in mitochondria. They have established that a specific gene expression signature correlating with high levels of mitochondrial RNA modifications is associated with metastasis and poor prognosis in patients with head and neck cancer. When the researchers blocked the responsible RNA modifying enzyme in cancer cells, the number of metastases was reduced. Certain antibiotics that suppress protein synthesis in mitochondria were also able to prevent the invasive spread of cancer cells in laboratory experiments. The results have now been published in the journal Nature.

Cancer cells in aggressive tumors invade the surrounding tissue in an attempt to form a new tumor in other organs. During this journey, cancer cells have to survive unfavorable conditions such as shortage of oxygen or shortage in nutrients. To overcome these stress factors, cancer cells adapt their accordingly. The allowing this flexibility were poorly understood until now. “However, we suspected that this metabolic plasticity must be a key to the successful spread of the cancer cells,” says Michaela Frye; cell biologist at the German Cancer Research Center.

Mitochondria are tiny, membrane-enveloped structures known as the powerhouse of every cell in our body. For energy production, they use the so-called respiratory chain present in the mitochondrial membrane. Because mitochondria contain their own genetic material, they themselves produce key components of the respiratory chain.

/* */