Inspired by your liver and activated by light, a chemical process developed in labs at Rice University and in China shows promise for drug design and the development of unique materials.
Researchers led by Rice chemist Julian West and Xi-Sheng Wang at the University of Science and Technology of China, Hefei, are reporting their successful catalytic process to simultaneously add two distinct functional groups to single alkenes, organic molecules drawn from petrochemicals that contain at least one carbon-carbon double bond combined with hydrogen atoms.
Better yet, they say, is that these alkenes are “unactivated”—that is, they lack reactive atoms near the double bond—and until now, have proven challenging to enhance.
Flashes of what may become a transformative new technology are coursing through a network of optic fibers under Chicago.
Researchers have created one of the world’s largest networks for sharing quantum information —a field of science that depends on paradoxes so strange that Albert Einstein didn’t believe them.
The network, which connects the University of Chicago with Argonne National Laboratory in Lemont, is a rudimentary version of what scientists hope someday to become the internet of the future. For now, it’s opened up to businesses and researchers to test fundamentals of quantum information sharing.
For a few years now, spent grain, the cereal residue from breweries, has been reused in animal feed. This material could also be used in nanotechnology. Professor Federico Rosei’s team at the Institut national de la recherche scientifique (INRS) has shown that microbrewery waste can be used as a carbon source to synthesize quantum dots. The work, done in collaboration with Claudiane Ouellet-Plamondon of the École de technologie supérieure (ÉTS), was published in the Royal Society of Chemistry’s journal RSC Advances.
Often considered “artificial atoms,” quantum dots are used in the transmission of light. With a range of interesting physicochemical properties, this type of nanotechnology has been successfully used as a sensor in biomedicine or as LEDs in next generation displays. But there is a drawback. Current quantum dots are produced with heavy and toxic metals like cadmium. Carbon is an interesting alternative, both for its biocompatibility and its accessibility.
Australian scientists have taken the first step towards improved storage of human cells, which may lead to the safe storage of organs such as hearts and lungs.
The team’s discovery of new cryoprotective agents opens the door to many more being developed that could one day help to eliminate the need for organ transplant waiting lists. Their results are published in the Journal of Materials Chemistry B.
Cryopreservation is a process of cooling biological specimens down to very low temperatures so they can be stored for a long time. Storing cells through cryopreservation has had big benefits for the world—including boosting supplies at blood banks and assisting reproduction—but it is currently impossible to store organs and simple tissues.
An estimated one-quarter of adults in the U.S. have nonalcoholic fatty liver disease (NAFLD), an excess of fat in liver cells that can cause chronic inflammation and liver damage, increasing the risk of liver cancer. Now, UT Southwestern researchers have developed a simple blood test to predict which NAFLD patients are most likely to develop liver cancer.
“This test lets us noninvasively identify who should be followed most closely with regular ultrasounds to screen for liver cancer,” said Yujin Hoshida, M.D. Ph.D., Associate Professor of Internal Medicine in the Division of Digestive and Liver Diseases at UTSW, a member of the Harold C. Simmons Comprehensive Cancer Center, and senior author of the paper published in Science Translational Medicine.
NAFLD is rapidly emerging as a major cause of chronic liver disease in the United States. With rising rates of obesity and diabetes, its incidence is expected to keep growing. Studies have found that people with NAFLD have up to a seventeenfold increased risk of liver cancer. For NAFLD patients believed to be most at risk of cancer, doctors recommend a demanding screening program involving a liver ultrasound every six months. But pinpointing which patients are in this group is challenging and has typically involved invasive biopsies.
An international team of researchers has demonstrated a technique that allows them to align gold nanorods using magnetic fields, while preserving the underlying optical properties of the gold nanorods.
“Gold nanorods are of interest because they can absorb and scatter specific wavelengths of light, making them attractive for use in applications such as biomedical imaging, sensors, and other technologies,” says Joe Tracy, corresponding author of a paper on the work and a professor of materials science and engineering at North Carolina State University.
It is possible to tune the wavelengths of light absorbed and scattered by engineering the dimensions of the gold nanorods. Magnetically controlling their orientation makes it possible to further control and modulate which wavelengths the nanorods respond to.
The invention of the transistor in 1947 by Shockley, Bardeen and Brattain at Bell Laboratories ushered in the age of microelectronics and revolutionized our lives. First, so-called bipolar transistors were invented, in which negative and positive charge carriers contribute to the current transport; unipolar field effect transistors were only added later. The increasing performance due to the scaling of silicon electronics in the nanometer range has immensely accelerated the processing of data. However, this very rigid technology is less suitable for new types of flexible electronic components, such as rollable TV displays or medical applications.
For such applications, transistors made of organic material, or carbon-based semiconductors, have come into focus in recent years. Organic field effect transistors were introduced as early as 1986, but their performance still lags far behind silicon components.
A research group led by Prof. Karl Leo and Dr. Hans Kleemann at the TU Dresden has now succeeded for the first time in demonstrating an organic, highly efficient bipolar transistor. Crucial to this was the use of highly ordered thin organic layers. This new technology is many times faster than previous organic transistors, and for the first time the components have reached operating frequencies in the gigahertz range (i.e., more than a billion switching operations per second).
Neuro-Protection & Neuro-Regeneration R&D For Optic Pathologies — Dr. Thomas V. Johnson, MD, PhD, Johns Hopkins Medicine
Dr. Thomas V. Johnson III, M.D., Ph.D. (https://www.hopkinsmedicine.org/profiles/details/thomas-johnson) is a glaucoma specialist and the Allan and Shelley Holt Rising Professor in Ophthalmology at Wilmer Eye Institute, at Johns Hopkins University. He is also a member of the Retinal ganglion cell (RGC) Repopulation, Stem cell Transplantation, and Optic nerve Regeneration (RReSTORe) consortium (https://www.hopkinsmedicine.org/wilmer/research/storm/rrestore/index.html), an initiative focused on advancing translational development of vision restoration therapies for glaucoma and other primary optic neuropathies by assembling an international group of more than 100 leading and emerging investigators from related fields.
Dr. Johnson received his BA (summa cum laude) in Biological Sciences from Northwestern University in 2005. As a Gates-Cambridge Scholar and an NIH-OxCam Scholar, he earned his PhD in Clinical Neuroscience from the University of Cambridge (UK) in 2010. He completed his medical training (AOA) at the Johns Hopkins School of Medicine in 2014 and served as an intern on the Johns Hopkins Osler Medical Service prior to completing his ophthalmology residency and glaucoma fellowship at the Wilmer Eye Institute.
Dr. Johnson’s research interests are focused on understanding the pathophysiology of retinal and optic nerve neurodegenerative disorders, and on the development of neuroprotective and neuroregenerative therapies for these conditions. His doctoral thesis work evaluated intraocular stem and progenitor cell transplantation as a possible neuroprotective therapy for glaucoma. His research contributions have been recognized with a World Glaucoma Association Award nomination, the National Eye Institute’s Scientific Director’s Award, and the Association for Research in Vision and Ophthalmology’s Merck Innovative Ophthalmology Research Award. He also founded and served as director of the Student Sight Savers Program, a program that provides vision screening services to low-income residents of Baltimore, and helps them obtain access to clinical ophthalmological care.
Presently, Dr. Johnson is interested in the neurobiological processes that lead to retinal ganglion cell death and dysfunction in glaucoma and other optic neuropathies. In particular, he seeks to better understand the molecular mechanisms underlying axonal degeneration, dendrite retraction and afferent synapse loss, and cell body death in glaucoma. His goal is to utilize knowledge of these processes to develop targeted neuroprotective strategies to slow or halt RGC death and preserve vision for patients with glaucoma. He is also leading new investigations into the use of stem cell transplantation to achieve retinal ganglion cell placement, as a potential regenerative treatment for optic nerve disease, with a focus on anatomic incorporation of cell grafts, neurite growth and synapse formation, and electrophysiological retinal circuit integration.
A new theory suggests that mutations have few straightforward ways to establish themselves in cells and cause tumors.
For many researchers, the road to cancer prevention is long and difficult, but a recent study by Rice University scientists suggests that there may be shortcuts.
A theoretical framework is being developed by Rice scientist Anatoly Kolomeisky, postdoctoral researcher Hamid Teimouri, and research assistant Cade Spaulding that will explain how cancers brought on by several genetic mutations might be more readily recognized and perhaps prevented.
Scientists have developed a new technique that can repair and even regenerate heart muscle cells after a heart attack (or myocardial infarction).
While it has only been tested on mice so far, if it works the same in humans it could potentially be a life-saving treatment for people who have suffered a heart attack.
The technique uses a synthetic messenger ribonucleic acid (mRNA). mRNA creates a ‘blueprint’ of DNA sequences that the body then uses to build the proteins that form and regulate our cells. By tweaking the mRNA, scientists can deliver different instructions for different biological processes.