Toggle light / dark theme

Dr. Sanjoy Dutta, Ph.D. — CSO, JDRF International — Improving Lives Curing Type 1 Diabetes (T1D)

Improving Lives Curing Type 1 Diabetes (T1D) — Dr. Sanjoy Dutta, Ph.D. — Chief Scientific Officer, JDRF


Dr. Sanjoy Dutta, PhD, is the Chief Scientific Officer at JDRF International (https://www.jdrf.org/) a nonprofit organization that funds Type 1 Diabetes (T1D) research, provides a broad array of community and activist services to the T1D population, and actively advocates for regulation favorable to medical research and approval of new and improved treatment modalities.

Dr. Dutta oversees all of JDRF’s efforts to cure Type 1 Diabetes and improve the lives of those living with it, which includes beta cell therapies, immunotherapies, glucose control and related disease complications. He is also responsible for international partnerships with world-leading government, non-government, foundation and commercial organizations. Dr. Dutta joined JDRF in 2009.

Prior to coming to JDRF, Dr. Dutta was the Associate Director of Translational Medicine and Clinical Biomarkers at Bristol-Myers Squibb, and Principal Scientist of Cardiovascular and Metabolic Diseases at Hoffmann-La Roche.

Dr. Dutta obtained his doctorate from the department of biochemistry and molecular biology at the University of Southern California and was a JDRF Postdoctoral Fellow in the department of cell biology and the Joslin Diabetes Center at Harvard Medical School.

Light-driven micro-swimmers for responsive drug delivery

In recent years, scientists have introduced a wide variety of robots of all shapes and sizes. Among these are microswimmers, carefully engineered microstructures that can move in water and other liquids.

Microswimmers could have numerous interesting applications, for instance allowing doctors to deliver drugs to targeted regions inside the human body, or scientists to introduce specific substances in water-based environments. While some of these robotic systems achieved remarkable results, most of them were found to be unable to efficiently move inside the human body.

Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS) have recently developed new light-driven microswimmers that could be more suited for navigating within biological systems, including body fluids. These microswimmers, introduced in a paper published in Science Robotics, are simple microparticles based on the two-dimensional (2D) carbon nitride poly(heptazine imide) or PHI.

The hepatoprotective effects of fennel seeds extract and trans‐Anethole in streptozotocin‐induced liver injury in rats

Hypoglycemic, anti-inflammatory, and antioxidant activities of fennel have been recorded in numerous investigations. The study aimed to evaluate the protective effects of fennel or its active component trans-Anethole (TA) on streptozotocin-induced liver injury in rats. Rats were injected with a single dose of STZ (65 mg/kg) and treated with fennel (200 and 400 mg/kg), TA (80 mg/kg), or metformin (300 mg/kg) for 35 days. Serum lipid profile and liver enzyme activity (aminotransferases), oxidative stress markers, and the degree of fibrosis in the liver tissue were assessed. Both fennel and TA decreased blood glucose levels, reduced liver enzyme activity, food, and water intake, and intensity of weight loss, reduced serum triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and increased high-density lipoprotein cholesterol (HDL-c). Additionally, fennel and TA significantly reduced MDA concentration while increased CAT activity and thiol content and reduced the degree of injury and fibrosis in the liver of diabetic rats. Our results suggest that fennel seed extract and its active compound TA are able to protect the liver against diabetes-induced hepatic injury in rats, probably via hypoglycemic and antioxidant effects.


The effects of fennel seed extract and its active compound trans-Anethole were investigated in the STZ-induced liver injury in rats. Both fennel and trans-Anethole effectively reduced blood glucose l…

Estimated 73% of US now immune to omicron: Is that enough?

The omicron wave that assaulted the United States this winter also bolstered its defenses, leaving enough protection against the coronavirus that future spikes will likely require much less — if any — dramatic disruption to society.

Millions of individual Americans’ immune systems now recognize the virus and are primed to fight it off if they encounter omicron, or even another variant.

About half of eligible Americans have received booster shots, there have been nearly 80 million confirmed infections overall and many more infections have never been reported. One influential model uses those factors and others to estimate that 73% of Americans are, for now, immune to omicron, the dominant variant, and that could rise to 80% by mid-March.

Flippy the Fast Food Robot Just Got Hired in 100 Restaurants

Before the pandemic started (ah, those glorious days…) a collective panic was mounting over automation and robots gradually replacing workers in various fields, or “stealing our jobs,” as the common refrain went. These worries haven’t subsided two years later, but they’re being countered by severe and largely unexpected labor shortages across multiple sectors of the economy. One of the industries that’s struggling most is restaurants. While we may still encounter automation-related unemployment problems down the road, right now it seems robots are lending a much-needed hand in food service.

One of these robots is none other than Flippy, initially debuted in 2017 to flip burgers at a California fast food chain. Since then Miso Robotics, Flippy’s maker, has expanded the bot’s capabilities, creating a version that can cook chicken wings, fries, and other greasy delights. This week also brought a significant expansion to Flippy’s presence as White Castle announced plans to install the robot at more than 100 restaurants this year.

White Castle was the first restaurant chain to significantly invest in Flippy, piloting the robotic assistant in 2020. The chain gave feedback about the robot to Miso, and the company put out a second iteration called Flippy 2 last November. This new robot can independently do the work of an entire fry station: its AI-enabled vision identifies foods, picks them up, and cooks them in fry baskets designated for that food specifically. The bot then moves cooked items to a hot-holding area.

New DNA computer assesses water quality

Northwestern University synthetic biologists have developed a low-cost, easy-to-use, hand-held device that can let users know—within mere minutes—if their water is safe to drink.

The new device works by using powerful and programmable genetic networks, which mimic , to perform a range of logic functions.

Among the DNA-based circuits, for example, the researchers engineered cell-free molecules into an analog-to-digital converter (ADC), a ubiquitous circuit type found in nearly all electronic devices. In the -quality device, the ADC circuit processes an analog input (contaminants) and generates a digital output (a visual signal to inform the user).

New study shows differences between the brains of girls and boys with autism

Brain organization differs between boys and girls with autism, according to a new study from the Stanford University School of Medicine.

The differences, identified by analyzing hundreds of brain scans with artificial intelligence techniques, were unique to and not found in typically developing boys and girls. The research helps explain why autism symptoms differ between the sexes and may pave the way for better diagnostics for girls, according to the scientists.

Autism is a developmental disorder with a spectrum of severity. Affected children have social and communication deficits, show restricted interests and display repetitive behaviors. The original description of autism, published in 1943 by Leo Kanner, MD, was biased toward male patients. The disorder is diagnosed in four times as many boys as girls, and most autism research has focused on males.

Researchers combine piezoelectric thin film and metasurfaces to create lens with tunable focus

For the first time, researchers have created a metasurface lens that uses a piezoelectric thin film to change focal length when a small voltage is applied. Because it is extremely compact and lightweight, the new lens could be useful for portable medical diagnostic instruments, drone-based 3D mapping and other applications where miniaturization can open new possibilities.

“This type of low-power, ultra-compact varifocal lens could be used in a wide range of sensor and imaging technologies where system size, weight and cost are important,” said research project leader Christopher Dirdal from SINTEF Smart Sensors and Microsystems in Norway. “In addition, introducing precision tunability to metasurfaces opens up completely new ways to manipulate light.”

Dirdal and colleagues describe the new technology in the journal Optics Letters. To change , a voltage is applied over lead zirconate titanate (PZT) membranes causing them to deform. This, in turn, shifts the distance between two metasurface lenses.