Toggle light / dark theme

From artificial organs to advanced batteries: A breakthrough 3D-printable polymer

A new type of 3D-printable material that gets along with the body’s immune system, pioneered by a University of Virginia research team, could lead to safer medical technology for organ transplants and drug delivery systems. It could also improve battery technologies.

The breakthrough is the subject of a new article published in the journal Advanced Materials, based on work done by the University of Virginia’s Soft Biomatter Laboratory, led by Liheng Cai, an associate professor of materials science and engineering and chemical engineering. The paper’s first author is Baiqiang Huang, a Ph.D. student in the School of Engineering and Applied Science.

Their research shows a way to change the properties of polyethylene glycol to make stretchable networks. PEG, as it’s known, is a material already used in many biomedical technologies such as tissue engineering, but the way PEG networks are currently produced—created in water by crosslinking linear PEG polymers, with the water removed afterward—leaves a brittle, crystallized structure that can’t stretch without losing its integrity.

UT Eclipses 5,000 GPUs To Increase Dominance in Open-Source AI, Strengthen Nation’s Computing Power

Amid the private sector’s race to lead artificial intelligence innovation, The University of Texas at Austin has strengthened its lead in academic computing power and dominance in computing power for public, open-source AI. UT has acquired high-performance Dell PowerEdge servers and NVIDIA AI infrastructure powered by more than 4,000 NVIDIA Blackwell architecture graphic processing units (GPUs), the most powerful GPUs in production to date.

The new infrastructure is a game-changer for the University, expanding its research and development capabilities in agentic and generative AI while opening the door to more society-changing discoveries that support America’s technological dominance. The NVIDIA GB200 systems and NVIDIA Vera CPU servers will be installed as part of Horizon, the largest academic supercomputer in the nation, which goes online next year at UT’s Texas Advanced Computing Center (TACC). The National Science Foundation (NSF) is funding Horizon through its Leadership Class Computing Facility program to revolutionize U.S. computational research.

UT has the most AI computing power in academia. In total, the University has amassed more than 5,000 advanced NVIDIA GPUs across its academic and research facilities. The University has the computing power to produce open-source large language models — which power most modern AI applications — that rival any other public institution. Open-source computing is nonproprietary and serves as the backbone for publicly driven research. Unlike private sector models, it can be fine-tuned to support research in the public interest, producing discoveries that offer profound benefits to society in such areas as health care, drug development, materials and national security.

Scientists Call Age-25 Cannabis Rules a Myth

“This Perspective concludes that an MLA between 18–21 years is a scientifically supportable and socially coherent threshold for non-medical cannabis use.”


What should be the minimum legal age for recreational cannabis? This is what a recent study published in The American Journal on Drug and Alcohol Abuse hopes to address as a team of scientists investigated the benefits and challenges of raising the legal age for using recreational marijuana to 25, with the current age range being 18 to 21, depending on the country. This study has the potential to help researchers, legislators, and the public better understand the neuroscience behind the appropriate age for cannabis use.

For the study, the researchers examined brain development for individuals aged 18–25, specifically regarding brain maturation and whether this ceases before age 25. They note it depends on a myriad of factors, including sex, geographic region, and physiology. This study comes as Germany recently published several studies regarding legalizing recreational marijuana nationwide and marijuana use rates post-legalization. In the end, the researchers for this most recent study concluded that raising the minimum legal age for recreational cannabis use to 25 is unnecessary.

The study notes, “This Perspective concludes that an MLA between 18–21 years is a scientifically supportable and socially coherent threshold for non-medical cannabis use. Policy decisions should be informed not only by neurobiological evidence but also by legal, justice, sociocultural, psychological, and historical considerations.”

/* */