Toggle light / dark theme

Diglycerides Are Associated With An Older Biological Age

And an increased all-cause mortality risk…


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Insulin on edge: Study identifies stress-triggered gene behind diabetes

Researchers from Osaka Metropolitan University have identified a gene that, when activated by metabolic stress, damages pancreatic β-cells—the cells responsible for insulin production and blood sugar control—pushing them toward dysfunction. The findings highlight a promising new target for early intervention in type 2 diabetes. The study is published in the Journal of Biological Chemistry.

While many factors can contribute to type 2 diabetes, lifestyle, especially diet, plays a major role in its onset. Genetics matter, but poor eating habits can greatly increase the risk of developing what is now often called a “silent epidemic.”

“Type 2 diabetes occurs when pancreatic β-cells, which secrete insulin to regulate , become impaired due to prolonged stress caused by poor dietary habits, a condition known as ,” said Naoki Harada, an associate professor at Osaka Metropolitan University’s Graduate School of Agriculture and lead author of this study.

Scientists use gene editing to correct harmful mitochondrial mutations in human cells

In a step toward treating mitochondrial diseases, researchers in the Netherlands have successfully edited harmful mutations in mitochondrial DNA using a genetic tool known as a base editor. The results, published in the open-access journal PLOS Biology, offer new hope for people with rare genetic conditions.

Mitochondria have their own small set of DNA. Mutations in this mitochondrial DNA can lead to a wide range of maternally inherited diseases, cancer, and aging-related conditions. While the development of CRISPR technology has given scientists new ways to correct mutations in nuclear DNA, this system cannot effectively cross the mitochondrial membrane and reach mitochondrial DNA.

In the new study, the researchers used a tool called a base editor—specifically, a DdCBE (double-stranded DNA deaminase toxin A-derived cytosine ). This tool allows scientists to change a single letter in the DNA code without cutting it, and it works on mitochondrial DNA.

Fusion superkine and focused ultrasound could enable targeted, noninvasive therapy for glioblastoma

Researchers at VCU Massey Comprehensive Cancer Center and the VCU Institute of Molecular Medicine (VIMM) have discovered a new and potentially revolutionary way to treat glioblastoma (GBM), the most aggressive type of brain cancer, which currently has no curative treatment options.

In a study led by Paul B. Fisher, MPh, Ph.D., FNAI, and Swadesh K. Das, Ph.D., recently published in the Journal for ImmunoTherapy of Cancer, researchers created a that demonstrates the ability to introduce a combination of treatment outcomes—direct toxicity and immunotoxicity—to kill the tumor while exploiting immunotherapy to potentially prevent the recurrence of GBM. The new molecule, a fusion superkine (FSK), contains dual-acting therapeutic cytokines in a single molecule.

“This is the tip of the iceberg,” said Dr. Fisher, the Thelma Newmeyer Corman Endowed Chair in Cancer Research at Massey, director of the VIMM and professor in the Department of Cellular, Molecular and Genetic Medicine. “We’re optimistic that our first trial in , planned for 2026, will show that the IL-24 gene and these therapeutic viruses are effective and safe. And [the FSK] will be the one knocking it out of the ballpark.

How new information triggers the brain to navigate changing environments

In a paper published in the journal Nature Communications, biomedical engineers have shown how two brain regions quickly adapt to shift focus from one planned destination to another.

Stephanie Prince explains her research with a scenario many Atlantans can relate to. Imagine you’re driving to the Atlanta airport to pick up a friend. They call to say they’re in the terminal—but they’re not sure which one. North, maybe? You head in that direction through the maze of roads around the airport.

Then they call back. They’re actually in the South Terminal. So you make a quick mental adjustment and switch your route to arrive at the correct side of the airport.

‘ALS on a chip’ model reveals altered motor neuron signaling

Using stem cells from patients with ALS (amyotrophic lateral sclerosis), Cedars-Sinai has created a lifelike model of the mysterious and fatal disease that could help identify a cause of the illness as well as effective treatments.

In a study published in the journal Cell Stem Cell, investigators detail how they created “ALS on a chip” and the clues the specialized laboratory chip has already produced about nongenetic causes of the disease, also known as Lou Gehrig’s disease.

The work builds on previous studies where adult cells from ALS patients were reverted into . The cells were then pushed forward to produce motor neurons, which die in the disease, causing progressive loss of the ability to move, speak, eat and breathe.

A Novel Platform for Root Protection Applies New Root-Coating Technologies to Mitigate Soil-Borne Tomato Brown Rugose Fruit Virus Disease

Tomato brown rugose fruit virus (ToBRFV) is a soil-borne virus showing a low percentage of ca. 3% soil-mediated infection when the soil contains root debris from a previous 30–50 day growth cycle of ToBRFV-infected tomato plants. We designed stringent conditions of soil-mediated ToBRFV infection by increasing the length of the pre-growth cycle to 90–120 days, adding a ToBRFV inoculum as well as truncating seedling roots, which increased seedling susceptibility to ToBRFV infection. These rigorous conditions were employed to challenge the efficiency of four innovative root-coating technologies in mitigating soil-mediated ToBRFV infection while avoiding any phytotoxic effect. We tested four different formulations, which were prepared with or without the addition of various virus disinfectants. We found that under conditions of 100% soil-mediated ToBRFV infection of uncoated positive control plants, root-coating with formulations based on methylcellulose (MC), polyvinyl alcohol (PVA), silica Pickering emulsion and super-absorbent polymer (SAP) that were prepared with the disinfectant chlorinated-trisodium phosphate (Cl-TSP) showed low percentages of soil-mediated ToBRFV infection of 0%, 4.3%, 5.5% and 0%, respectively. These formulations had no adverse effect on plant growth parameters when compared to negative control plants grown under non ToBRFV inoculation conditions.

/* */