Toggle light / dark theme

This development comes from…


Researchers have designed a high-speed 3D bioprinter to accurately print human tissues.

Interestingly, this advanced bioprinter is capable of fabricating a diverse array of tissues, including both soft brain tissue and harder materials such as cartilage and bone.

MIT researchers have developed a battery-free, subcellular-sized device made of polymer designed to measure and modulate a neuron’s electrical and metabolic activity. When the device is activated by light, it can gently wrap around the neuron cell’s axons and dendrites without damaging the cells.

Scientists want to inject thousands of these tiny wireless devices into a patient’s central nervous system and then actuate them noninvasively using light. The light would penetrate the tissue and allow precise control of the devices, and thereby restore function in cases of neuronal degradation like multiple sclerosis (MS).

The MIT researchers developed these thin-film devices from a azobenzene, a soft polymer that readily reacts to light. Thin sheets of azobenzene roll into a cylinder when exposed to light, which enables them to wrap around cells. Researchers can control the direction and diameter of the rolling by changing the intensity and polarization of the light, producing a microtube with a diameter smaller than one micrometer.

RegenxBio, a publicly-traded biotech firm, released data this week from a Phase 2 clinical trial designed to test its leading genetic therapy product in patients with bilateral wet age-related macular degeneration (AMD). AMD is characterized by abnormal growth of blood vessels in the retina, and is a leading cause of loss of vision in elderly populations globally.

ABBV-RGX-314, developed in collaboration with AbbVie, offers the potential of a one-time treatment for wet AMD and other retinal conditions, including diabetic retinopathy. This is in contrast to existing treatments which rely on repeated intraocular injections of drugs that inhibit a protein known as Vascular Endothelial Growth Factor (VEGF), a protein responsible for the formation of new retinal blood vessels.

The ABBV-RGX-314 therapy is based on a an AAV8 viral vector as a delivery system. The AAV8 platform has been genetically engineered to encode an antibody that can inhibit VEGF for the long-term.

Most recently, 90s heartthrob and Dawson’s Creek star James Van Der Beek announced he’d been diagnosed with colorectal cancer at the age of just 47.

The rise is mysterious, but experts suspect ultra-processed foods, pollution and the over use of antibiotics could be driving microscopic cancer-causing changes in the body’s cells.

Now, a team of scientists across five nations, including at King’s College London, have been given £20 million by charities including Cancer Research UK to fund fresh studies that will begin early next year, The Times reported.

The phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is one of the most critical and extensively investigated signaling pathways. It is the central regulator of various cellular processes including cell growth, proliferation, metabolism, and survival. Hyperactivation of PI3K-AKT signaling is highly related to a significant number of human diseases, particularly cancers.

The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. H2S, a gasotransmitter synthesized endogenously and by specific gut microbiota, acts as a potent modulator of mitochondrial function and oxidative stress, protecting against cellular damage. Through sulfate-reducing bacteria, gut microbiota influences systemic H2S levels, creating a link between gut health and metabolic processes. Dysbiosis, or an imbalance in microbial populations, can alter H2S production, impair mitochondrial function, increase oxidative stress, and heighten inflammation, all contributing factors in neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

Scientists in Japan have created hybrid plant-animal cells, essentially making animal cells that can gain energy from sunlight like plants. The breakthrough could have major benefits for growing organs and tissues for transplant, or lab-grown meat.

Animal and plant cells have different energy-producing structures inside them. For animals, that’s mitochondria, which convert chemical energy from food into a form that our cells can use. Plants and algae, meanwhile, use chloroplasts, which perform photosynthesis to generate energy from sunlight to power their cells.

In a new study led by the University of Tokyo, the team inserted chloroplasts into animal cells, and found that they continued to perform photosynthetic functions for at least two days. The chloroplasts were sourced from red algae, while the animal cells were cultured from hamsters.

The researchers’ recently published study describes a way to re-activate apoptosis in mutated cells, which would amount to forcing cancer to self-destruct through a bioengineered, bonding molecule.

Gerald Crabtree, one of the study’s authors and a professor of development biology, said he had the idea while hiking through Kings Mountain, California, during the pandemic period. The new compound would have to bind two proteins which already exist in the cancerous cells, turning apoptosis back on and making the cancer kill itself.

“We essentially want to have the same kind of specificity that can eliminate 60 billion cells with no bystanders,” Crabtree said, so that no cell gets destroyed if it isn’t the proper target of this new killing mechanism. The two proteins in question are known as BCL6, an oncogene which suppresses apoptosis-promoting genes in the B-cell lymphoma, and CDK9, an enzyme that catalyzes gene activation instead.

In recent years, standing has been touted as a remedy to a sedentary lifestyle, especially for desk workers who spend long hours seated at their screens.

But a new study from researchers in Australia and the Netherlands has found standing for long periods of time might not be much better than sitting after all – and actually comes with its own life-threatening risks.

Just under seven years of data from 83,013 adults were collected as part of the UK Biobank, using wrist-worn devices to track their activity, sleep, and sedentary time. The amount of time individuals spent standing and sitting was matched with incidences of cardiovascular diseases – coronary heart disease, heart failure and stroke – as well as circulatory diseases – low blood pressure on standing, varicose veins, chronic venous insufficiency, and venous ulcers.