Toggle light / dark theme

This presents another challenge: convincing patients to allow the use of their data. Some 70% of Americans have expressed concerns about data privacy, with 56% admitting they find AI in healthcare “scary.”

It isn’t helped by the growing number of data breaches in the healthcare space, with 88 million patients having had their personal health information compromised in data breaches last year alone. Undoubtedly, if AI-powered healthcare is to maintain its trajectory, the sector will need to address these cybersecurity concerns.

AI is no longer a prospect but a reality today. It’s already being deployed in doctors’ offices and hospitals to analyze patient data, handle back-office tasks and assist surgeons. Anticipated to decrease administrative costs by up to 30%, free up hundreds of thousands of hours of physicians’ time and cut surgical waiting times—for the millions of Americans currently suffering in silence, whether due to affordability or accessibility, AI will offer a lifeline.

For years, they had been losing their central vision—what allows people to see letters, faces, and details clearly. The light-receiving cells in their eyes had been deteriorating, gradually blurring their sight.

But after receiving an experimental eye implant as part of a clinical trial, some study participants can now see well enough to read from a book, play cards, and fill in a crossword puzzle despite being legally blind. Science Corporation, the California-based brain-computer interface company developing the implant, announced the preliminary results this week.

When Max Hodak, CEO of Science and former president of Neuralink, first saw a video of a blind patient reading while using the implant, he was stunned. It led his company, which he founded in 2021 after leaving Neuralink, to acquire the technology from Pixium Vision earlier this year.

RedC Biotech revolutionizing healthcare with technology to mass-produce red blood cells from stem cells; aimed at solving blood donation shortage, it offers safe, contamination-free supply, vital for patients needing frequent transfusions.

Middlemen get a bad rap for adding cost and complications to an operation. So, eliminating the go-betweens can reduce expense and simplify a process, increasing efficiency and consumer happiness.

James Dahlman and his research team have been thinking along those same lines for . They’ve created a technique that eliminates noisome middlemen and could lead to new, less-invasive treatments for blood disorders and . It sidesteps the discomfort and risks of current treatments, making life easier for patients.

“This would be an alternative to invasive hematopoietic stem cell therapies—we could just give you an IV drip,” said Dahlman, McCamish Early Career Professor in the Wallace H. Coulter Department of Biomedical Engineering. “It simplifies the process and reduces the risks to patients. That’s why this work is important.”

The breakthrough marks a promising target for drug therapies that slow, possibly reverse, the disease’s development

NEW YORK, NY, December 23, 2024 — Researchers with the CUNY ASRC have unveiled a critical mechanism that links cellular stress in the brain to the progression of Alzheimer’s disease (AD). The study, published in the journal Neuron, highlights microglia, the brain’s primary immune cells, as central players in both the protective and harmful responses associated with the disease.

Microglia, often dubbed the brain’s first responders, are now recognized as a significant causal cell type in Alzheimer’s pathology. However, these cells play a double-edged role: some protect brain health, while others worsen neurodegeneration. Understanding the functional differences between these microglial populations has been a research focus for Pinar Ayata, the study’s principal investigator and a professor with the CUNY ASRC Neuroscience Initiative and the CUNY Graduate Center’s Biology and Biochemistry programs.

A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to enhance memory during sleep.

This is the first time breathing rhythms during sleep have been linked to these hippocampal brain waves — called slow waves, spindles, and ripples — in humans. Scientists knew these waves were linked to memory but their underlying driver was unknown.

“To strengthen memories, three special neural oscillations emerge and synchronize in the hippocampus during sleep, but they were thought to come and go at random times,” said senior study author Christina Zelano, professor of neurology at Northwestern University.

A research team led by Prof. Nie Guangjun from the National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences (CAS) and collaborators have demonstrated a tumor membrane antigens-based nanovaccine derived from liposomal doxorubicin treated tumor tissues, which is efficacious in inducing a potent immunological defense against tumors. The study is published online in Cell Reports Medicine.

For solid tumor surgeries, challenges remain in postoperative tumor recurrence and metastasis. The correlation between postoperative tumor recurrence and metastasis and the host’s antitumor immune status is well-established. Personalized cancer vaccines, using the patient’s own tumor as an antigen source, stimulate a robust immune response that is efficacious in eliminating residual neoplastic foci following as well as in targeting metastatic lesions at a distance, significantly reducing the risk of postoperative tumor recurrence and metastasis.

The efficacy of autologous tumor in has been limited by their weak immunogenicity. The tumor contains tumor-presented antigens and associated antigens, which can be developed into a personalized antigen library that more accurately reflects the expression of tumor antigens. Vaccines based on autologous tumor cell membrane antigens have been developed.

The all-in-one optical fiber spectrometer offers a compact microscale design with performance on par with traditional laboratory-based systems.

Miniaturized spectroscopy systems capable of detecting trace concentrations at parts-per-billion (ppb) levels are critical for applications such as environmental monitoring, industrial process control, and biomedical diagnostics.

However, conventional bench-top spectroscopy systems are often too large, complex, and impractical for use in confined spaces. Traditional laser spectroscopy techniques rely on bulky components—including light sources, mirrors, detectors, and gas cells—to measure light absorption or scattering. This makes them unsuitable for minimally invasive applications, such as intravascular diagnostics, where compactness and precision are essential.