Toggle light / dark theme

When Neuralink co-founder Max Hodak announced his enigmatic departure from the company earlier this year, it was unclear whether he quit due to disagreements with fellow co-founder Elon Musk or if he was fired for moving too slow on clinical trials.

Now, Futurism has learned, Hodak is working on what appears to be a well-funded new brain interface venture called Science Corp. According to an SEC filing from July, Hodak has already raised more than $47 million from 14 investors for the new company — not quite as much as Neuralink’s $363 million to date, but a rousing start that could signal growing competition in the nascent neurotech market.

Moreover, Hodak appears to be taking some talent from Neuralink with him. Alan Mardinly, Neuralink’s longtime director of biology, recently changed his LinkedIn account to say that he has been working at a “stealth startup” since July 2021 and left his position at Neuralink in August 2021 — and posted a link to Science Corp’s hiring page along with an exhortation to “join early,” strongly suggesting that he’s on board the venture.

An excellent article rebutting some of common negative reactions to the idea of de-extinction. I applaud George Church, Ben Lamm, and colleagues for their efforts to leverage the genomics revolution to recreate the wooly mammoth and the Thylacine. These represent exciting steps for repairing damaged ecosystems. Such approaches will also most likely have the side benefit of generating new technologies for biomedical applications. I’d love to see similar de-extinction efforts addressing loss of insect and microorganism biodiversity as well! #biotech #future #crispr #techforgood


When mammoths disappeared from the Arctic some 4,000 years ago, shrubs overtook what was previously grassland. Mammoth-like creatures could help restore this ecosystem by trampling shrubs, knocking over trees, and fertilising grasses with their faeces.

Theoretically, this could help reduce climate change. If the current Siberian permafrost melts, it will release potent greenhouse gases. Compared to tundra, grassland might reflect more light and keep the ground cooler, which Colossal hopes will prevent the permafrost from melting.

Suicide is the second leading cause of death for young people aged between 15 and 29 [1]. Suicidal thoughts and behaviors (STBs) typically emerge during adolescence [2]. It has been estimated that between 11 and 29% of adolescents report suicidal ideation (suicidal thoughts), and 2–10% of adolescents attempted suicide in the past year [3]. Unfortunately, the number of suicide attempts among children and adolescents has continued to increase sharply despite national and international prevention efforts [4].

To improve targeting of prevention and intervention efforts and thereby reduce the number of deaths by suicide in this age group, we must increase our understanding of the mechanisms underlying both suicidal thoughts and suicidal behaviors (including suicide attempts) in young people. Neuroimaging, including Magnetic Resonance Imaging (MRI), is a useful tool with which to identify biological risk markers for STBs in vivo and non-invasively. Many neuroimaging studies have been published examining the neural substrates of STBs in the past 20 years, but few have focused on STBs in youth (for a review, see [5]). Although several of these studies support lower regional brain volumes, particularly in ventral and dorsal prefrontal and also in temporal regions [6,7,8,9] in suicide attempters with mood disorders, negative findings have also been reported [10, 11].

One of the most upsetting aspects of age-related memory decline is not being able to remember the face that accompanies the name of a person you just talked with hours earlier. While researchers don’t understand why this dysfunction occurs, a new study conducted at University of Maryland School of Medicine (UMSOM) has provided some important new clues. The study was published on September 8 in Aging Cell.

Using aging , researchers have identified a new mechanism in neurons that causes memories associated with these social interactions to decline with age. In addition, they were able to reverse this in the lab.

The researchers report that their findings identified a specific target in the brain that may one day be used to develop therapies that could prevent or reverse loss due to typical aging. Aging memory problems are distinct from those caused by diseases like Alzheimer’s or dementia. At this time, there are no medications that can prevent or reverse cognitive decline due to typical aging.

Magnetorotational instability—a process that might explain the dynamics of astrophysical accretion disks—has finally been observed in the laboratory.

What do black holes, forming stars, and a tank of liquid metal in Princeton, New Jersey, have in common? The first two might and the third one definitely does play host to an important process in magnetized-fluid dynamics called magnetorotational instability (MRI). MRI has been well studied theoretically and computationally, and related processes have been seen experimentally [1]. But until now, there has not been an unambiguous laboratory confirmation of its existence. Yin Wang and his colleagues at Princeton University have demonstrated MRI in an ingenious liquid-metal experiment—the culmination of more than 20 years of work [2].

The team’s discovery is significant because MRI has long been suspected of being at the heart of accretion [3]. Accretion, in which material spirals inward in a flattened disk around a black hole or a young star, is a major source of the light coming from those objects. For accretion to occur, the material in the disk must lose its angular momentum. However, angular momentum is conserved: much like the trash we generate in our daily lives, it does not cease to exist when it is not wanted. Instead, angular momentum must be passed from the inner parts of the disk to the outer parts. What drives this angular-momentum transport has long been a mystery.

In 1998 I was exposed to the term “disruptive innovation” for the first time. I read a wonderful book, “The Innovator’s Dilemma” by Clayton Christensen, where I learned the difference between incremental innovation and disruptive innovation. He analyzed the hard drive industry and showed that while many companies were trying to increase the capacity of the drives, other companies changed the form factor and made the drives smaller. This resulted in disruptive progress in the industry. We also recently witnessed dramatic advances in artificial intelligence (AI), where in 2013/2014 AI systems started outperforming humans in image recognition.


Identifying novel targets and designing novel molecules is not the only way to innovate in the biopharmaceutical industry. Sometimes, innovation in delivery systems for well-know and established therapeutics may be just as disruptive as the new targeted medicine.

00:00 Intro.
02:44 Kernel Flow brain interface.
08:03 Seeing my brain activity.
12:42 Reversing aging-Project Blueprint.
18:18 Overcoming depression.
26:42 Starting Kernel.
34:40 Why non-invasive?
36:43 Comparison to Tesla/ Neuralink.
43:52 Elon considered joining Kernel?
44:52 Kernel hiring.
46:17 Participate in the studies.

Participate & experience Kernel Flow: https://www.kernel.com/participate.
Information: Kernel Flow: https://www.kernel.com/flow.
Kernel Careers: https://jobs.lever.co/kernel-2
Neura Pod Episode about Kernel & Bryan Johnson: https://youtu.be/c0VFiEhDg6I
Bryan Johnson LinkedIn: https://www.linkedin.com/in/bryanrjohnson/
Bryan Johnson Personal Page: https://www.bryanjohnson.co/
Blueprint Website: https://blueprint.bryanjohnson.co/

After selling his company, Braintree/Venmo, for $800 million and battling chronic depression for 10 years, Bryan Johnson is now on a mission to help us measure and gather more data about the organ that makes us oh-so human: our brain.

In this episode, Ryan Tanaka and Omar Olivares share an exclusive, behind the scenes look of Kernel’s headquarters near Los Angeles, California. Ryan interviews Bryan Johnson, tries on Kernel’s wearable brain-interface, ‘Flow,’ and learns about the engineering and technology developments needed to make it all happen. CTO, Ryan Field and Director of Applied Neuroscience, Katherine Perdue also share insights about Kernel’s wearable Flow headset.

A fundamental discovery concerning a driver of healthy development in embryos might rewrite our understanding of what we can inherit from our parents and how their life experiences shape us. The new study reveals that epigenetic information, which sits on top of DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).