Toggle light / dark theme

Electrical activity in neurons is highly energy demanding and accompanied by rises in cytosolic Ca2+. Cytosolic Ca2+, in turn, secures energy supply by pushing mitochondrial metabolism either through augmented NADH transfer into mitochondria via the malate aspartate shuttle (MAS) or via direct activation of dehydrogenases of the TCA cycle after passing into the matrix through the mitochondrial Ca2+ uniporter (MCU). Another Ca2+-sensitive booster of mitochondrial ATP synthesis is the glycerol-3-phosphate shuttle (G3PS) whose role in neuronal energy supply has remained elusive. Essential components of G3PS are expressed in hippocampal neurons. Single neuron metabolic measurements in primary hippocampal cultures derived from rat pups of either sex reveal only moderate, if any, constitutive activity of G3PS. However, during electrical activity neurons fully rely on G3PS when MAS and MCU are unavailable. Under these conditions, G3PS is required for appropriate action potential firing. Accordingly, G3PS safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling.

SIGNIFICANCE STATEMENT:

Ca2+ ions are known to provide a link between the energy-demanding electrical activity and an adequate ATP supply in neurons. To do so, Ca2+ acts both, from outside and inside of the mitochondrial inner membrane. Neuronal function critically depend on this regulation and its defects are often found in various neurological disorders. Although interest in neuronal metabolism increases, many aspects thereof have remained unresolved. In particular, a Ca2+-sensitive NADH shuttling system, the glycerol-3-phosphate shuttle, has been largely ignored with respect to its function in neurons. Our results demonstrate that this shuttle is functional in hippocampal neurons and safeguards ATP supply and appropriate action potential firing when malate aspartate shuttle and mitochondrial Ca2+ uniporter are unavailable, thereby ensuring neuronal metabolic flexibility.

A team of researchers at the Max Planck Institute for Intelligent Systems, working with a pair of colleagues from the Harbin Institute of Technology, has developed a tiny actuated gearbox that can be used to give very tiny robots more power. In their paper published in the journal Science Robotics, the group describes how their gearbox works and the power improvements observed in several types of tiny robots.

Over the past several years, scientists have been working toward the development of tiny robots that can be injected into the to carry out medical procedures. The hope is that such robots can be sent to find and destroy , for example. Such tiny robots are too small to carry their own power plant; thus, they must be manipulated using an . Unfortunately, as the robots grow ever tinier, their power diminishes as they have too little mass. In this new effort, the researchers have found a way to increase the power of the tiny robots using a tiny gearbox that helps them become stronger.

The gearbox comes with a magnet on its end to harness the power in a magnetic field via the gears in the box. And the gearbox is able to magnify the power of a using clever features including elastic components and mechanical linkages.

The trial was only on 8 people, but it appears to have worked well across the board.


Published in GeroScience, a groundbreaking study from the renowned Conboy lab has confirmed that plasma dilution leads to systemic rejuvenation against multiple proteomic aspects of aging in human beings.

This paper takes the view that much of aging is driven by systemic molecular excess. Signaling molecules, antibodies, and toxins, which gradually accumulate out of control, cause cells to exhibit the gene expression that characterizes older cells.

While the bloodstreams of old and young mice have been joined in previous experiments with substantial effects [1], this heterochronic parabiosis approach is neither feasible nor necessary for human beings. Instead, this paper focuses on therapeutic plasma exchange (TPE), a procedure that simply replaces blood plasma with saline solution and albumin. This procedure has already been used to dilute pathogenic, toxic compounds [2], the systemic problems associated with autoimmune and neurological disorders, including Alzheimer’s [3], and even the lingering aftereffects of viral infection [4].

In a study published in Cell Reports, we present a novel algorithm for the digital generation of neuronal morphologies, based on the topology of their branching structure. This algorithm generates neurons that are statistically similar to the biological neurons, in terms of morphological properties, electrical responses and the connectivity of the networks they form.

This study represents a major milestone for the Blue Brain Project and for the future of computational neuroscience. The topological neuron synthesis enables the generation of millions of unique neuronal shapes from different cell types. This process will allow us to reconstruct brain regions with detailed and unique neuronal morphologies at each cell position.

The topological representation of neurons facilitates the generation of neurons that approximate morphologies that are structurally altered compared to healthy neuronal morphologies. These structural alterations of neurons are disrupting the brain systems and are contributing factors to brain diseases. The topological synthesis can be used to study the differences between healthy and diseased states of different brain regions and specifically, what structural alterations of neurons are causing important problems to the networks they form.

Scientists have discovered that increasing the production of new neurons in mice with Alzheimer’s.

Alzheimer’s disease is a disease that attacks the brain, causing a decline in mental ability that worsens over time. It is the most common form of dementia and accounts for 60 to 80 percent of dementia cases. There is no current cure for Alzheimer’s disease, but there are medications that can help ease the symptoms.

A team of University of British Columbia researchers working on developing oral insulin tablets as a replacement for daily insulin injections have made a game-changing discovery.

Researchers have discovered that insulin from the latest version of their oral tablets is absorbed by rats in the same way that injected insulin is.

“These exciting results show that we are on the right track in developing an insulin formulation that will no longer need to be injected before every meal, improving the quality of life, as well as mental health, of more than nine million Type 1 diabetics around the world.” says professor Dr. Anubhav Pratap-Singh (he/him), the principal investigator from the faculty of land and food systems.