Toggle light / dark theme

In the year 1,808, French chemists Joseph-Louis Gay-Lussac and Louis-Jacques Thenard, and independently, English chemist Humphry Davy, discovered the fifth element of the periodic table—boron. In crystalline form, boron primarily possesses three polymorphs, i.e., three distinct unit cell configurations: α-rhombohedral, β-rhombohedral, and β-tetragonal, among 16 possible bulk allotropes.

The unique properties of this element have resulted in its use in numerous applications, including chemistry, , life sciences, energy research and electronics. Moreover, based on studies conducted over the past decade, has significant potential for use in pharmaceutical drug design as it plays an essential role in bone growth and maintenance, wound healing, prevention of vitamin-D deficiency and other processes.

In the periodic table of elements, boron lies to the left of carbon, which causes boron to have similar valence orbitals but a shorter covalent radius. In contrast to carbon, which favors a 2D (two-dimensional) layered structure (aka graphite) in its bulk form, the bulk allotropes of boron are composed of B12 icosahedral cages. As a result, it was challenging to experimentally realize a 2D atomic network of boron, also known as borophene, until 2015.

Scientists in China have cloned what are being called ‘super cows’, local media has reported. These cows are reportedly able to produce huge amounts of milk in their lifetime. The cows have been cloned as part of a process to reduce China’s dependence on foreign breeds. According to China’s Global Times, about 70 per cent of China’s dairy cows are imported from other countries.

The ‘super cows’ are three calves which have been cloned by China’s Northwest University of Agricultural and Forestry Science and Technology. These calves were born in Ningxia region in weeks leading to January 23, said reports in local media.

Jin Yaping, lead scientist of the project described the successful cloning as ‘breakthrough’.

Warm dense matter (WDM) measures thousands of degrees in temperature and is under the pressure of thousands of Earth’s atmospheres. Found in many places throughout the universe, it is expected to have beneficial applications on Earth. However, its investigation is a challenge.

Even the temperature of a material under WDM conditions is anything but easy to determine. A team of researchers led by Dr. Tobias Dornheim from the Center for Advanced Systems Understanding (CASUS) at HZDR has demonstrated a mathematical solution that allows an accurate assessment of the temperature.

As the team points out in the journal Nature Communications, their method can readily be used at experimental facilities of matter research around the world and expedite the gain of scientific knowledge.

A judge in Colombia caused a stir by announcing he had used the AI chatbot ChatGPT in preparing a ruling in a children’s medical rights case.

Judge Juan Manuel Padilla said he used the text-generating bot in a case involving a request to exonerate an from paying fees for medical appointments, therapy and transportation given his parents’ limited income.

Padilla told Blu Radio on Tuesday that ChatGPT and other such programs could be useful to “facilitate the drafting of texts” but “not with the aim of replacing” judges.

My recently published perspective paper has been featured by GEN Genetic Engineering & Biotechnology News!

#biotechnology #genetherapy #syntheticbiology


Synthetic biology has the potential to upend existing paradigms of adeno-associated virus (AAV) production, helping to reduce the high costs of gene therapy and thus make it more accessible, according to a recent paper.

AAVs are an important vector for gene therapy, but AAV manufacturing is complex and expensive. Furthermore, first author Logan Thrasher Collins, a PhD candidate at Washington University in Saint Louis, tells GEN. “Many current industry approaches to enhancing AAV yields involve incremental process optimization. Synthetic biology has the potential to offer more radical improvements, yet is relatively underappreciated in the context of AAV production.”

Large-scale production poses challenges not typically found during preclinical stages, such as batch-to-batch variations in plasmid yield and purity, and poor yields from producer cells, the research team notes. Likewise, downstream processing challenges also are present, such as AAV aggregation, chemical lysis, and filtration complications. The rational approach to AAV design offered by synthetic biology, however, enables scientists to programmably design systems that assemble complex macromolecular structures and to avoid—or at least minimize—many of those challenges.

Expand (PITTSBURGH, Pa.) — One of the most consistent issues that disaster response teams face is blood shortages. These headaches, caused by short supply and perishability, make blood donations a constant push across the nation. CBS News reports that in Pennsylvania, scientists from the University of Pittsburgh School of Medicine and UPMC are making progress, and could see results within the decade.

According to scientific reports, this study relies on studying the DNA of the bird known as “Dodo”, which lived on the island of Mauritius in the middle of the Indian Ocean until the late seventeenth century, and was unable to fly. It may seem like a fantasy, because the animal has been extinct for centuries, but scientists make it clear that their quest is based on very carefully studied steps.

Transhumanism is the idea that technology and evidence-based science can and should be used to augment and improve humans in order to overcome the limitations that evolution has left us with. As the name suggests, it stems from humanism, but it adds an optimism that cognitive and physical improvement is both possible and desirable.

On the face of it, the idea that humans should be permitted to use technology to live healthier and happier lives does not sound dangerous, or even contentious. But it does provoke strong opposition: in 2004, Francis Fukuyama called transhumanism “the world’s most dangerous idea”. The force of that claim is somewhat undermined when you consider how wildly wrong his previous big idea turned out to be: in 1992 he declared that because the Cold War ended with the collapse of the Soviet Union, history had come to an end. Nevertheless, Fukuyama is not alone in fearing transhumanism.

Some people object to transhumanism because they think we should strive to be “natural”, and to be content with what evolution – or their god — have given us. But of course the definition of what is “natural” changes over time. Nature didn’t endow us with spectacles, and few people now argue they should be banned. Now we have cochlear implants, and many people feel that their smartphones are extensions of themselves. In the future we will have the option of raising our IQ with smart drugs or with gene therapy, and these will be hotly debated.

Nerve cells require vast amounts of energy and oxygen which they receive through the bloodstream. This results in nerve tissue being densely intertwined with numerous blood vessels. However, what prevents neurons and vascular cells from interfering with each other during growth? Researchers from the Universities of Heidelberg and Bonn, in collaboration with international partners, have uncovered a mechanism that ensures this coordination. The findings have recently been published in the journal Neuron.

Nerve cells are highly energy-intensive, requiring a large amount of fuel. Approximately 20% of the calories we consume through food are dedicated to our brain, as the generation of voltage pulses (action potentials) and transmission between neurons is incredibly energy-demanding. For this reason, nerve tissue is usually crisscrossed by numerous blood vessels. They ensure a supply of nutrients and oxygen.

During embryonic development, a large number of vessels sprout in the brain and spinal cord, but also in the retina of the eye. Additionally, masses of neurons are formed there, which network with each other and with structures such as muscles and organs. Both processes have to be considerate of each other so as not to get in each other’s way. “We have identified a new mechanism that ensures this,” explains Prof. Dr. Carmen Ruiz de Almodóvar, member of the Cluster of Excellence ImmunoSensation2 and the Transdisciplinary Research Area Life & Health at the University of Bonn.