Toggle light / dark theme

Scientists from the University of Virginia School of Medicine and collaborators used the building blocks of life to potentially revolutionize electronics.

The scientists utilized DNA to guide a chemical reaction that would overcome the barrier to Little’s superconductor, which was once thought to be “insurmountable”, a press statement reveals.

😳!


Newsom said the emergency declaration would help support the state’s vaccination efforts. Demand for the vaccines has outstripped supply as infections rise. Staff at sexual health clinics and other sites have struggled to keep up with the influx of people seeking the shots.

California is mobilizing personnel from its Emergency Medical Services to help administer the vaccines. Newsom said the state is working across all levels of government to slow the spread through testing, contract tracing and community outreach.

California’s declaration comes after Illinois declared a public health emergency earlier Monday. New York declared a state disaster emergency in response to the outbreak late Friday.

Basically what this article says that schizophrenia is hard to pin down on the actual source of the symptoms so as of now the dsm 5 has it as a illness type but it is no longer on the dsm 5 essentially. This can relieve the stigma relating to it because it’s actually source of the disease is still not truly know. There are still medications for it but the actual source seems to be kinda unknown as it seems like other diseases aswell.


As human beings and scientists, we can think about phenomena in terms of categories and continuities. The distinction between light “particles” and “waves,” discovered by 20th-century quantum mechanics, is a case in point. Just as the particle-wave duality necessitated revisions in the understanding of the basic concepts and fundamental methods of theoretical physics, the revolution in psychiatric classification seems to bring with it the end of the fixed and fateful category of schizophrenia.

Still, most clinicians agree that some individuals do experience delusions, hallucinations, and disorganized speech that make them sound irrational. They attest that they have seen individuals who clearly exhibit disorganized or catatonic behavior, flat affect, or the failure to maintain basic self-care. Yet a growing number of psychiatrists maintain that, as a presumed disease entity, as an identifiable state, with clear subtypes, schizophrenia simply does not “exist.” Some consider schizophrenia no more than an “end stage” of other untreated mental disorders (in the same way that heart failure is the terminal stage of various heart diseases); others propose to abolish the diagnosis altogether.

Summary: A group of hippocampal neurons show rhythmic activity at different frequencies in the desynchronized state, but can align their rhythmic frequency to produce a synchronized brain rhythm upon activation.

Source: Institute for Experimental Medicine.

In the 17th century, the Dutch scientist Christiaan Huygens hung two of his recently invented pendulum clocks on a wooden beam and observed that as time passed, the clocks aligned their beats. He reported this finding, which he called an “odd sympathy,” in 1665. Three and a half centuries later, neurons in the brain were found to sync their activities in a similar way.

Circa 2020 Reversing the biological clock to essentially reverse aging.


Expression of three Yamanaka transcription factors in mouse retinal ganglion cells restores youthful DNA methylation patterns, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice, suggesting that mammalian tissues retain a record of youthfu…

The main structure shaping the mouse digit tip in size and form is the terminal phalangeal bone (Fig. Supl. 1). As all long bones, the terminal phalanx is formed during embryonic development through endochondral ossification, resulting in longitudinal growth, and through the process of appositional ossification, resulting in peripheral growth13. Differently from all long bones, the length of the distal phalanx is further increased by an additional ossification center located at the distal tip of the bone, through intramembranous ossification13,14. Estimations point that 55% of the postnatal elongation of the distal phalanx of mice is a consequence of this distal process13. One study showed that although distal amputation eliminates part of the terminal phalanx formed by endochondral ossification, bone regrowth after amputation is exclusively due to distal intramembranous ossification13. Similar to bone formation by intramembranous ossification during development or after injury16, bone regrowth after distal amputation of the mouse digit tip depends on Wnt signaling17.

Re-establishment of homeostasis and nail and bone regrowth are expected to occur naturally after digit tip lesions. However, the formation of a blastema, which is a hallmark of epimorphic regeneration in salamanders, has been largely discussed in mammals7,9,18,19,20,21,22. The search for a mammalian blastema is sustained by the idea that, as in salamanders, tissue-specific cells, or stem/progenitor cells, would respond to the distal amputation lesion, migrating to a central distal-most region of the digit, creating the multi-tissue structure comprising the regenerating digit. A study in mice17 shows that as in salamanders, each tissue comprising the regenerated digit is formed by tissue-specific stem cells residing in the tissues preserved after amputation, suggesting that trans-differentiation does not occur in amputated mouse digit tip. However, it is not known whether these stem cells are integrating a regenerative blastema induced by the distal amputation or simply generating more tissue through endogenous tissue repair responses.

In this study, we compared digit regenerative capacity after distal and proximal amputation and propose a hypothetical mechanism by which digits are able to regain a morphology that is close to normal after distal amputations but fails when amputations are performed proximally. While most tissues re-establish homeostasis in very similar ways in distal and proximal amputated digits, bone growth is only observed after distal amputations. Observing the regions affected by each amputation plan, we propose that the main difference between these two amputation plans is the elimination of osteogenic signals and precursor cells in proximally amputated digits. In distally amputated digits, the source of osteogenic signal emanating from the nail17 and the presence of osteoprogenitor cells in the periosteum23 could be sufficient to promote bone growth and give the digit a new tip.