Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1059

Aug 15, 2021

Virtual reality boosts brain rhythms crucial for neuroplasticity, learning and memory

Posted by in categories: biotech/medical, computing, engineering, neuroscience, virtual reality

This is interesting. 😃


A new discovery in rats shows that the brain responds differently in immersive virtual reality environments versus the real world. The finding could help scientists understand how the brain brings together sensory information from different sources to create a cohesive picture of the world around us. It could also pave the way for “virtual reality therapy” for learning and memory-related disorders ranging including ADHD, Autism, Alzheimer’s disease, epilepsy and depression.

Continue reading “Virtual reality boosts brain rhythms crucial for neuroplasticity, learning and memory” »

Aug 15, 2021

Artificial Intelligence Classifies Brain Tumors With Single MRI Scan

Posted by in categories: biotech/medical, robotics/AI

A team of researchers at Washington University School of Medicine have developed a deep learning model that is capable of classifying a brain tumor as one of six common types using a single 3D MRI scan, according to a study published in Radiology: Artificial Intelligence.

“This is the first study to address the most common intracranial tumors and to directly determine the tumor class or the absence of tumor from a 3D MRI volume,” said Satrajit Chakrabarty, M.S., a doctoral student under the direction of Aristeidis Sotiras, Ph.D., and Daniel Marcus, Ph.D., in Mallinckrodt Institute of Radiology’s Computational Imaging Lab at Washington University School of Medicine in St. Louis, Missouri.

The six most common intracranial tumor types are high-grade glioma, low-grade glioma, brain metastases, meningioma, pituitary adenoma and acoustic neuroma. Each was documented through histopathology, which requires surgically removing tissue from the site of a suspected cancer and examining it under a microscope.

Aug 13, 2021

SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus)

Posted by in categories: biotech/medical, evolution

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have ACE2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, and can be abundant near urban centers. We evaluated 624 pre-and post-pandemic serum samples from wild deer from four U.S. states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2,021 using a surrogate virus neutralization test. A subset of samples was tested using a SARS-CoV-2 virus neutralization test with high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.

One-Sentence Summary Antibodies to SARS-CoV-2 were detected in 40% of wild white-tailed deer sampled from four U.S. states in 2021.

SARS-CoV-2, the virus that causes COVID-19 in humans, can infect multiple domestic and wild animal species (1 – 7). Thus, the possibility exists for the emergence of new animal reservoirs of SARS-CoV-2, each with unique potential to maintain, disseminate, and drive novel evolution of this virus. Of particular concern are wildlife species that are both abundant and live in close association with human populations (5).

Aug 13, 2021

Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children

Posted by in category: biotech/medical

Multisystem inflammatory syndrome in children (MIS-C) onsets in COVID-19 patients with manifestations similar to Kawasaki disease (KD). Here the author probe the peripheral blood transcriptome of MIS-C patients to find signatures related to natural killer (NK) cell activation and CD8+ T cell exhaustion that are shared with KD patients.

Aug 13, 2021

Researchers take step toward next-generation brain-computer interface system

Posted by in categories: biotech/medical, computing, neuroscience

A new kind of neural interface system that coordinates the activity of hundreds of tiny brain sensors could one day deepen understanding of the brain and lead to new medical therapies.

Aug 13, 2021

Bulletproof chainmail? Next-gen fabric stiffens on demand

Posted by in categories: biotech/medical, robotics/AI

Materials that change their properties in response to certain stimuli could come to occupy a valuable space in many fields, ranging from robotics, to medical care, to advanced aircraft. A new example of this type of shape-shifting technology is modeled on ancient chain mail armor, enabling it to swiftly switch from flexible to stiff thanks to carefully arranged interlocking particles.

Contact Seller

Continue reading “Bulletproof chainmail? Next-gen fabric stiffens on demand” »

Aug 13, 2021

Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Yes this says a 3 year epigenetic clock reversal in just 8 weeks thanks to diet and lifestyle changes. There is a list of supplements too:

Alpha ketoglutarate, vitamin C and vitamin A curcumin, epigallocatechin gallate (EGCG), rosmarinic acid, quercetin, luteolin.


Manipulations to slow biological aging and extend healthspan are of interest given the societal and healthcare costs of our aging population. Herein we report on a randomized controlled clinical trial conducted among 43 healthy adult males between the ages of 50–72. The 8-week treatment program included diet, sleep, exercise and relaxation guidance, and supplemental probiotics and phytonutrients. The control group received no intervention. Genome-wide DNA methylation analysis was conducted on saliva samples using the Illumina Methylation Epic Array and DNAmAge was calculated using the online Horvath DNAmAge clock (2013). The diet and lifestyle treatment was associated with a 3.23 years decrease in DNAmAge compared with controls (p=0.018). DNAmAge of those in the treatment group decreased by an average 1.96 years by the end of the program compared to the same individuals at the beginning with a strong trend towards significance (p=0.066). Changes in blood biomarkers were significant for mean serum 5-methyltetrahydrofolate (+15%, p=0.004) and mean triglycerides (−25%, p=0.009). To our knowledge, this is the first randomized controlled study to suggest that specific diet and lifestyle interventions may reverse Horvath DNAmAge (2013) epigenetic aging in healthy adult males. Larger-scale and longer duration clinical trials are needed to confirm these findings, as well as investigation in other human populations.

Continue reading “Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial” »

Aug 13, 2021

Shockingly Realistic AI Robot Dog “Jennie”

Posted by in categories: biotech/medical, robotics/AI

đŸ¶ Lifelike & Realistic Pets on Amazon: https://amzn.to/3uegCXk đŸ±
đŸ”„ Robot Dog Kit on Amazon: https://amzn.to/3jirOw9
đŸ€– Robot Dogs that are just like Real Dogs: https://youtu.be/pifs1DE-Ys4

▶ Subscribe: https://bit.ly/3eLtWLS

Continue reading “Shockingly Realistic AI Robot Dog ‘Jennie’” »

Aug 13, 2021

A Specific Example of How AlphaFold 2 From DeepMind Could Help Us Achieve Immortality

Posted by in categories: biotech/medical, life extension, robotics/AI

https://www.youtube.com/watch?v=PMQ-ViucOig

I think SENS did this last year but now AlphaFold2 will make it easier and faster.


Hey it’s Han from WrySci HX discussing how breakthroughs in the protein folding problem by AlphaFold 2 from DeepMind could combine with the SENS research foundation’s approach of allotopic mitochondrial gene expression to fight aging damage. More below ↓↓↓

Continue reading “A Specific Example of How AlphaFold 2 From DeepMind Could Help Us Achieve Immortality” »

Aug 13, 2021

How computer vision works

Posted by in categories: augmented reality, biotech/medical, food, robotics/AI

It’s no secret that AI is everywhere, yet it’s not always clear when we’re interacting with it, let alone which specific techniques are at play. But one subset is easy to recognize: If the experience is intelligent and involves photos or videos, or is visual in any way, computer vision is likely working behind the scenes.

Computer vision is a subfield of AI, specifically of machine learning. If AI allows machines to “think,” then computer vision is what allows them to “see.” More technically, it enables machines to recognize, make sense of, and respond to visual information like photos, videos, and other visual inputs.

Over the last few years, computer vision has become a major driver of AI. The technique is used widely in industries like manufacturing, ecommerce, agriculture, automotive, and medicine, to name a few. It powers everything from interactive Snapchat lenses to sports broadcasts, AR-powered shopping, medical analysis, and autonomous driving capabilities. And by 2,022 the global market for the subfield is projected to reach $48.6 billion annually, up from just $6.6 billion in 2015.