Toggle light / dark theme

Apertura Gene Therapy and Rett Syndrome Research Trust Collaborate to Pioneer Advanced Genetic Medicines for Rett Syndrome Using TfR1-Targeted AAV Capsid

NEW YORK and TRUMBULL, Conn., April 30, 2025 /PRNewswire/ — Apertura Gene Therapy, a biotechnology company focused on innovative gene therapy solutions, and the Rett Syndrome Research Trust (RSRT), an organization working to cure Rett Syndrome, today announced a collaboration to license Apertura’s human transferrin receptor 1 capsid (TfR1 CapX). This partnership aims to advance innovative genetic medicine approaches for the treatment of Rett Syndrome, a rare genetic neurological disorder caused by random mutations in the MECP2 gene on the X chromosome that primarily affect females, causing developmental regression and severe motor and language impairments.

Apertura’s TfR1 CapX is an intravenously delivered adeno-associated virus (AAV) capsid engineered to bind the transferrin receptor 1(TfR1), enabling efficient delivery of genetic medicines across the blood-brain barrier (BBB). TfR1 is a well-characterized BBB-crossing receptor, broadly and consistently expressed throughout life—even in the context of neurological disease—making it an attractive target for CNS delivery in disorders like Rett syndrome. Developed by Apertura’s academic founder, Dr. Ben Deverman, Director of Vector Engineering at the Broad Institute, TfR1 CapX has shown strong CNS selectivity in preclinical studies, achieving over 50% neuronal and 90% astrocyte transduction across multiple brain regions. Because Rett syndrome affects the brain diffusely, broader cellular transduction may correlate with greater symptomatic improvement.

DNA-based neural network learns from examples to solve problems

Neural networks are computing systems designed to mimic both the structure and function of the human brain. Caltech researchers have been developing a neural network made out of strands of DNA instead of electronic parts that carries out computation through chemical reactions rather than digital signals.

An important property of any neural network is the ability to learn by taking in information and retaining it for future decisions. Now, researchers in the laboratory of Lulu Qian, professor of bioengineering, have created a DNA-based neural network that can learn. The work represents a first step toward demonstrating more complex learning behaviors in .

A paper describing the research appears in the journal Nature on September 3. Kevin Cherry, Ph.D., is the study’s first author.

A light-programmable, dynamic ultrasound wavefront

The notion of a phased array was initially articulated by Nobel Prize recipient K. F. Braun. Phased arrays have subsequently evolved into a formidable mechanism for wave manipulation. This assertion holds particularly true in the realm of ultrasound, wherein arrays composed of ultrasound-generating transducers are employed in various applications, including therapeutic ultrasound, tissue engineering, and particle manipulation.

Importantly, these applications—contrary to those aimed at imaging—demand high-intensity ultrasound, which complicates the electrical driving requirements, as each channel necessitates its own independently operational pulse circuitry and amplifier. Consequently, the majority of phased array transducers (PATs) are constrained to several hundred elements, thereby restricting the capability to shape intricate ultrasound beams.

To date, there exists no scalable methodology for the powering and control of phased array transducers.

Tiny 3D-Printed Device Supercharges Tissue Engineering With Unprecedented Precision

The device is compact enough to rest on a fingertip and is compatible with current tissue-engineering technology. A newly developed 3D-printed device offers scientists the ability to build human tissue models with far greater precision and complexity. The tool, created by an interdisciplinary tea

Scientists Achieve First DNA-Free Gene Editing In Raspberry Plants Using CRISPR Technology

Scientists have achieved the first DNA-free CRISPR gene editing in raspberries, reaching 19% efficiency and opening the door to faster breeding of firmer, more resilient berries — though regenerating full plants remains a hurdle.

Harnessing mechanobiology to combat kidney disease

Chronic kidney disease affects an estimated 37 million people in the U.S., and for many, there is no cure. But a new research project at Washington University in St. Louis seeks to change that by uncovering the mechanical basis of kidney cell injury.

To tackle chronic kidney disease, Guy Genin, the Harold and Kathleen Faught Professor of Mechanical Engineering at the WashU McKelvey School of Engineering, and Jeffrey Miner, the Eduardo and Judith Slatopolsky Professor of Medicine in Nephrology at WashU Medicine, teamed up with Hani Suleiman, an assistant professor of medicine at the University of Texas Southwestern Medical Center. The interdisciplinary team, with expertise spanning medicine, cell biology, genetics and engineering, received a five-year $4 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, part of the National Institutes of Health (NIH).

With the NIH’s support, the team plans to study the mechanobiology of podocytes, specialized cells in the kidney that help filter blood.


Researchers at Washington University in St. Louis have received a $4 million grant to study specialized cells that could help treat kidney disease.

Scientists Say They’ve Created a New Form of Life More Perfect Than the One Nature Made

Scientists at the Medical Research Council’s Laboratory of Molecular Biology say they’ve engineered a bacteria whose genetic code is more efficient than any other lifeform on Earth.

They call their creation “Syn57,” a bioengineered strain of E. coli — yes, the same bad boy that can make you extremely sick if you eat an undercooked hot dogwhich uses seven less codons than all life on earth. A codon, put simply, is a three-letter sequence found in DNA and RNA which delivers instructions for amino acids, a fundamental “building block” of life.

For the past billions years or so, all known life on earth has used 64 codons. Scientists cracked the code detailing which codons corresponded to which amino acids — mapping the standard genetic code, in other words — in 1966, revealing only 20 total amino acids.

/* */