Toggle light / dark theme

Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions.

The innovation will allow researchers and students of all ages to navigate biological cells, puncturing through the membranes of organelles to view their interiors or wandering across the cytoplasm to see how the various structures are distributed within the cell.

“CraftCells: A Window into Biological Cells” is the first broadly accessible tool allowing users to get an accurate picture of whole cells in 3D, said Zaida (Zan) Luthey-Schulten, a professor of chemistry and of physics at the University of Illinois Urbana-Champaign who led the work with Illinois bioengineering professors Stephen Boppart and Rohit Bhargava, graduate student Kevin Tan, postdoctoral researchers Zane Thornburg and Seth Kenkel, and study lead author Tianyu Wu, a biophysics graduate student at the U. of I.

Synthetic biologists from Yale were able to re-write the genetic code of an organism—a novel genomically recoded organism (GRO) with one stop codon—using a cellular platform that they developed enabling the production of new classes of synthetic proteins. These synthetic proteins, researchers say, offer the promise of innumerable medical and industrial applications that can benefit society and human health.

The creation of the landmark GRO, known as “Ochre”—which fully compresses redundant, or “degenerate” codons, into a single codon—is described in a new study published in the journal Nature. A codon is a sequence of three nucleotides in DNA or RNA that codes for a specific amino acid, which serves as the biochemical building blocks for proteins.

“This research allows us to ask fundamental questions about the malleability of genetic codes,” said Farren Isaacs, professor of molecular, cellular and at Yale School of Medicine and of biomedical engineering at Yale’s Faculty of Arts and Sciences, who is co-senior author of the paper. “It also demonstrates the ability to engineer the genetic code to endow multi-functionality into proteins and usher in a new era of programmable biotherapeutics and biomaterials.”

Rice University researchers have revealed novel sequence-structure-property relationships for customizing engineered living materials (ELMs), enabling more precise control over their structure and how they respond to deformation forces like stretching or compression.

The study, published in a special issue of ACS Synthetic Biology, focuses on altering protein matrices, which are the networks of proteins that provide structure to ELMs. By introducing small genetic changes, the team discovered they could make a substantial difference in how these materials behaved. These findings could open doors for advancements in tissue engineering, drug delivery and even 3D printing of living devices.

“We are engineering cells to create customizable materials with unique properties,” said Caroline Ajo-Franklin, professor of biosciences and the study’s corresponding author. “While synthetic biology has given us tools to tweak these properties, the connection between genetic sequence, material structure and behavior has been largely unexplored until now.”

Professor Kwang-Hyun Cho’s research team of the Department of Bio and Brain Engineering at KAIST has captured the critical transition phenomenon at the moment when normal cells change into cancer cells and analyzed it to discover a molecular switch hidden in the genetic network that can revert cancer cells back into normal cells.

The team’s findings are published in the journal Advanced Science.

A critical transition is a phenomenon in which a sudden change in state occurs at a specific point in time, like water changing into steam at 100℃. This critical transition phenomenon also occurs in the process in which change into at a specific point in time due to the accumulation of genetic and .

Recent advances in the fields of human-infrastructure interaction, electronic engineering, robotics and artificial intelligence (AI) have opened new possibilities for the development of assistive and medical technologies. These include devices that can assist individuals with both physical and cognitive disabilities, supporting them throughout their daily activities.

Researchers at the University of Michigan recently developed CoNav, a smart controlled via a Robot Operating System (ROS) based framework. The new wheelchair, presented in a paper on the arXiv preprint server, could help to improve the quality of life of individuals who are temporarily or permanently unable to walk, allowing them to move in their surroundings more intuitively and autonomously.

“The inspiration for this work stems from a broader challenge in assistive mobility for people with disabilities (PWD),” Vineet Kamat, senior author of the paper, told Tech Xplore.

New genetic research from the University of Florida may help make key crops such as potatoes, tomatoes, and peppers more resistant to disease and environmentally resilient as well as increase their nutritional value.

“Our research illustrates the remarkable potential of combining deep taxonomic expertise with cutting-edge biotechnology,” author Fabio Pasin told the Chinese Academy of Sciences, via Phys.org. “By focusing on the Solanaceae family, we can enhance not only widely recognized crops but also bring underutilized species into the agricultural mainstream, improving food security and enriching nutritional diversity across the globe.”

Researchers used recombinant virus technologies to give new breeds of plants particular traits. This method is very specific about promoting certain traits in new breeds. Scary as it might sound to use an engineered virus to change the DNA of our food, it’s a way of improving biodiversity in agriculture when farming has become more and more homogeneous and thus vulnerable.

Tissue engineering utilizes 3D printing and bioink to grow human cells on scaffolds, creating replacements for damaged tissues like skin, cartilage, and even organs. A team of researchers led by Professor Insup Noh from Seoul National University of Science and Technology, Republic of Korea, has developed a bioink using nanocellulose derived from Kombucha SCOBY (Symbiotic Culture of Bacteria and Yeast) as the scaffold material.

The biomaterial offers a sustainable alternative to conventional options, and it can be loaded onto a hand-held “Biowork” biopen, also developed by the same team. The digital biopen allows the precise application of bioink to damaged defected areas, such as irregular cartilage and large skin wounds, paving the way for more personalized and effective in vivo tissue repair, eliminating the need for in vitro processes.

This paper was published in the International Journal of Biological Macromolecules on 1 December 2024.