Menu

Blog

Archive for the ‘3D printing’ category: Page 34

May 23, 2021

Scientists 3D print graphene aerogels that purify water at scale

Posted by in categories: 3D printing, chemistry, sustainability

University at Buffalo (UB) researchers have developed a novel 3D printed water-purifying graphene aerogel that could be scaled for use at large wastewater treatment plants.

Composed of a styrofoam-like aerogel, latticed graphene and two bio-inspired polymers, the novel material is capable of removing dyes, metals and organic solvents from drinking water with 100% efficiency. Unlike similar nanosheets, the scientists’ design is reusable, doesn’t leave residue and can be 3D printed into larger sizes, thus they now aim to commercialize it for industrial-scale deployment.

“The goal is to safely remove contaminants from water without releasing any problematic chemical residue,” explained study co-author and assistant professor of environmental engineering at UB, Nirupam Aich. “The aerogels we’ve created hold their structure when put into water treatment systems, and they can be applied in diverse water treatment applications.”

May 21, 2021

Trideo 3D printing castle

Posted by in category: 3D printing

Watch this studio 3D print a castle. 🤯 👍

Credit: Trideo.

May 21, 2021

What Do Bones and 3D Printing Have in Common?

Posted by in category: 3D printing

Turns out bones and 3D printing have a lot in common 🤔.

May 21, 2021

3D Printing Enables Captivating Metal Sculptures

Posted by in category: 3D printing

3D printing helps sculptor Julian Voss-Andreae create monumental sculptures that are later cast in bronze.

May 21, 2021

3D Printed Engine: Bringing 3D Printing Inside The World’s Largest Jet Engine

Posted by in categories: 3D printing, education, engineering, space

Circa 2020


Learn how a young team of additive manufacturing engineers helped bring 3D printed parts to the design of the GE9X, the world’s largest jet engine.

Stefka Petkova enjoys building things. It’s a passion she’s had since she was a small child when her dad, an electrician who liked to work on cars, kept the door to his workshop open. “I was exposed to that as a very young child and just got a lot of encouragement,” says Petkova, who she spent many afternoons watching him weld and wire automobiles.

Continue reading “3D Printed Engine: Bringing 3D Printing Inside The World’s Largest Jet Engine” »

May 17, 2021

NASA 3D-Printed Engine Hardware Passes Cold Spray, Hot Fire Tests

Posted by in categories: 3D printing, space travel

3D-printed parts can make rocket engines lighter, less expensive and more efficient.

At Marshall, we’re working with our industry partners to test the latest advances in additive manufacturing technologies:


NASA is partnering with Aerojet Rocketdyne to advance 3D printing technologies, known as metal additive manufacturing, and its capabilities for liquid rocket engines in landers and on-orbit stages/spacecraft.

Continue reading “NASA 3D-Printed Engine Hardware Passes Cold Spray, Hot Fire Tests” »

May 16, 2021

The Future of Fashion Is Fungi

Posted by in categories: 3D printing, sustainability

Why luxury brands like Hermès, Iris Van Herpen, and Stella McCartney are turning to mushrooms for an eco-alternative to leather.


The wondrous fungi-inspired creations in Dutch couture designer Iris Van Herpen’s Spring 2021 collection are like nothing else in the fashion world. Undulating crowns of brass coils top delicate micro-plissé gowns with bodices formed from sinuous silk tendrils. An early adopter of 3D printing and advocate for sustainability, van Herpen has emerged as a kind of oracle within the fashion industry. She spent lockdown in Amsterdam reading biologist Merlin Sheldrake’s book, Entangled Life: How Fungi Make Our Worlds, Change Our Minds & Shape Our Futures, which describes the hidden world of mycelium, the sprawling underground root-like networks of fungi (the visible part we know as mushrooms are akin to fruit on trees).

May 10, 2021

3D Printing ‘Artificial Leaves’ Could Solve Our Energy Problem on Mars /

Posted by in categories: 3D printing, energy, space

Microalgae 3D printed onto bacterial cellulose allows for a new oxygen-producing material.

May 9, 2021

New technique can print life-like organ models in minutes

Posted by in categories: 3D printing, bioengineering, biotech/medical, genetics, government

I still don’t get how there seems to be No organized effort anywhere to achieve the ability to 3D print a perfect genetic match of all organs by 2025 — 2030. You would think some government somewhere would want to work round the clock on this.


NIBIB-funded engineers at the University of Buffalo have fine-tuned the use of stereolithography for 3D printing of organ models that contain live cells. The new technique is capable of printing the models 10–50 times faster than the industry standard-;in minutes instead of hours-; a major step in the quest to create 3D-printed replacement organs.

Conventional 3D printing involves the meticulous addition of material to the 3D model with a small needle that produces fine detail but is extremely slow —taking six or seven hours to print a model of a human part, such as a hand, for instance. The lengthy process causes cellular stress and injury inhibiting the ability to seed the tissues with live, functioning cells.

Continue reading “New technique can print life-like organ models in minutes” »

May 7, 2021

Engineering student helps federal experts solve a messy 3D printing problem

Posted by in categories: 3D printing, engineering

Tomographic 3D printing is a revolutionary technology that uses light to create three-dimensional objects. A projector beams light at a rotating vial containing photocurable resin, and within seconds the desired shape forms inside the vial. The light projections needed to solidify specific 3D regions of the polymer are calculated using tomographic imaging concepts.

The technology was first demonstrated by researchers at the University of California, Berkeley and Lawrence Livermore National Labs in 2019, and a Swiss group at École Polytechnique Fédérale de Lausanne (EPFL) in 2020. It is significantly faster than traditional 3D printing in layers, can print around existing objects, and does not require support structures.

Though incredible, the technology can get messy in the lab. The vial’s round shape makes it refract rays like a lens. To counter this, experts use a rectangular index-matching bath that provides a flat surface for rays to pass through correctly. The vial of resin must be dipped in and out of the bath for each use—creating a slimy situation.

Page 34 of 137First3132333435363738Last