Toggle light / dark theme

Nina Notman learns how 4D printing is opening the door to unique smart materials whose applications may only be limited by our imaginations.

Smart materials are already part of our daily lives. From novelty mugs with thermochromic pigments that change colour when holding a hot drink, to photochromic prescription glasses’ lenses that darken when the sun is out, to hydrogels that expand to soak up liquid in disposable nappies and period products. But these are only the tip of the iceberg in terms of what smart materials – that can sense information about the environment around them and then act accordingly – are predicted to achieve in the future.

According to a recent Royal Society report, smart materials on the way include window glass that changes porosity in response to humidity, clothing that adapts to environmental conditions and self-healing concretes. ‘Animate materials could eventually have a transformative effect on all spheres of life,’ the report authors wrote.

“Spacecraft antenna designs are challenging due to their conflicting requirements for high gain, wide bandwidth, and low weight,” Mitsubishi announced. “High gain and wide bandwidth necessarily require a large aperture, but economical orbital deployment conventionally dictates that designs be lightweight and small enough to fit or fold inside a launch vehicle or satellite deployment mechanism.”

Mitsubishi also claimed that, with its new technology, ‘additive-manufacturing in space has now become possible.’ However, it’s worth noting that the International Space Station already features a 3D printer launched to the orbital station back in 2014. The European Space Agency also announced last year it would experiment with 3D printing in space using scrap metals from the Moon.

Still, the company’s new method has the potential to reduce the cost of satellite launches significantly, and it could pave the way for the construction of other vital parts for future space missions.

Admatec has steadily been increasing its 3D printing capabilities, taking its slurry-based digital light processing (DLP) process further. First it expanded from resins loaded with ceramic particles to those loaded with metal particles. It then increased the build volume of its Admaflex300 3D printer. Now, the company has introduced a new integrated debinding and sintering furnace with a larger work volume.

The majority of ceramic 3D printing processes rely on the use of a photopolymer slurry loaded with ceramic particles. Once printed, these green parts first go through a debinding process, in which the photopolymer material is removed, followed by sintering, causing the part to become fully dense.

Circa 2020


Researchers have created a new 3D printing technique that could replace traditional 3D printers that take far to long to create desired objects.

The problem with traditional 3D printers is that they work in horizontal layers. This process is the bane of 3D printing, as it means that, depending on the size of the object, it will take time to construct. What if the printer could build the entire model all at once, instead of layer-by-layer? Researchers from Switzerland’s Ecole polytechnique federale de Lausanne (EPFL) have done just that with their new invention.

Researchers from Nanyang Technological University, Singapore (NTU Singapore) have developed the capability to use recycled glass in 3D printing, opening doors to a more environmentally sustainable way of building and construction.

Glass is one material that can be 100% recycled with no reduction in quality, yet it is one of the least recycled waste types. Glass is made up of silicon dioxide, or silica, which is a major component of sand, and therefore it offers significant untapped potential to be recycled into other products.

At the same time, due to growing populations, urbanization and , the world is facing a shortage of sand, with calling it one of the greatest sustainability challenges of the 21st century.

BLACKSBURG, Va. (WFXR) – As housing prices across the country continue to skyrocket, an Iowa-based company, Alquist 3D, is looking to combat the crisis by 3D-printing homes.

Alquist, one of a few U.S. companies that 3D-prints houses, is looking to build 200 of these homes in Virginia starting this summer.

The process is somewhat simple. First, a person designs what they want the frame of the house to look like by using a computer program. Then, a file is transmitted to a machine, which tells it what to do and how to move.