Toggle light / dark theme

HOUSTON, Jan. 18, 2017 /PRNewswire/ — Made In Space and Axiom Space today, announce an agreement to be users and providers of one another’s capabilities to manufacture products in space. Made In Space is the only company to produce 3D printed products in Space and Axiom Space is the leading developer of the world’s first privately-owned commercial space station. This collaboration signifies Made In Space’s exciting transition from research phase, to manufacturing for commercial customers.

The companies have been working out the logistical elements of in-space manufacturing, outfitting the in-space factory with equipment, utilities, power, and thermal management to answer customers’ growing demand. In parallel to the manufacturing element, the companies are working together to plan the delivery of completed products to Earth, ensuring their quality during flight and upon arrival.

Read more

Researchers at MIT have developed a method of altering 3D printed objects once printed. The technique involves using light in order to adapt the chemical structure of a 3D printed material. This allows the creation of more complex objects which could be molded together, softened, or even enlarged.

The university is a hub of 3D printing research. Recently announcement include their Computer Science and Artificial Intelligence Lab creating the ‘photoshop for 3D printing’. The ‘Foundry’ software was developed in order to make use of 3D printing’s advanced capabilities over conventional manufacturing techniques. Also addressing 3D printing technology, MIT researchers looked at using 3D printing to investigate how graphene might create the strongest material ever.

The newly published paper is called ‘Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis’ and available in the ACS Central Science Journal.

Read more

California-based commercial aerospace company Moon Express, are on track to send their Electron rocket to the Moon in 2017. The Electron is propelled by 3D printed engines made by Rocket Lab, headquartered in Los Angeles. The project is designed for Google’s modern-day space race: the Lunar X Prize.

3D printed engines

Nine liquid-propellant Rutherford engines are behind the Electron. The rocket engines, the first to use 3D printing for the all core parts, use kerosene and liquid oxygen (LOX) for fuel.

Read more

If you were to pick one emerging technology with the potential to have a massive positive impact on humanity in the coming years, there’s a good chance you’d go with 3D bioprinting.

The ability to use “bio-ink” to print out biomaterials ranging from heart tissues to bone and cartilage is incredibly exciting — although at present it’s not exactly the most user-friendly of tech.

One company hoping to change that is Cellink, which this week has announced the launch of its new Bio X printer, which it hopes will bring 3D bioprinting to a whole new audience.

Read more

A while ago I got an idea: how awesome would it be to use 4D ultrasound to scan my unborn baby and make a VR experience of that. So I talked my girlfriend over even though the idea felt a bit weird and almost scary.

Show Full Text

How to make it happen? I searched for similar cases online, but couldn’t find any. All I could find was some examples of using ultrasound images for a 3D print of your unborn baby. So this was the first time in the world someone was doing this. Luckily I got people at the Aava Medical Centre excited about the idea, and they helped me forward. I also contacted GE, a manufacturer of 4D ultrasound systems, and they advised me how to extract the right kind of files from the ultrasound machine.

Read more

Syn Diamonds is a field that I have been educating many on the importance of in areas of QC, healthcare/ medical, and now we’re looking at transportation such as driverless cars. I told folks if we could have a joint venture with Intel and HP in this space; we could see these to companies re-emerge as leaders again just for this one area of technology. Who ever comes up with the 3D or 4D printer that can mass produce the quality we need in syn diamond materials in various scales/ sizes will dominate and make billions as this technology is a core piece to QC.


Lab-grown red diamonds with an atomic defect could one day replace GPS systems thanks to their remarkable sensitivity to magnetic waves, scientists have suggested.

A team at Element Six, a tech company based in Oxfordshire, are exploring the remarkable properties of crystals with a so-called ‘nitrogen vacancy defect’ — a gap in the atomic lattice at the heart of the diamond.

Read more