Menu

Blog

Page 4

Jul 9, 2024

Vessel Wall Imaging Features of Spontaneous Intracranial Carotid Artery Dissection

Posted by in category: futurism

This study investigated the ability of vessel wall imaging to identify the rarely reported spontaneous intracranial carotid dissection (sICD) guided by postmortem validation:


Background and Objectives.

Jul 9, 2024

Brain Organoids Communicate: A Step Toward “Organoid Intelligence”

Posted by in categories: genetics, neuroscience

Scientists have connected two organoids together with an axon bundle, to study how brain areas communicate. They sent signals back and forth and responded to external stimulation. This could be a step toward biocomputing.

Learn about: axons, white matter, re-entry, optogenetics, myelination, entrainment, short-term potentiation.

Continue reading “Brain Organoids Communicate: A Step Toward ‘Organoid Intelligence’” »

Jul 9, 2024

Thomas Hartung and colleagues | The future of organoid intelligence | Frontiers Forum Deep Dive 2023

Posted by in categories: biotech/medical, chemistry, computing, engineering, ethics, health, neuroscience, policy

Eexxeccellent.


Human brains outperform computers in many forms of processing and are far more energy efficient. What if we could harness their power in a new form of biological computing?

Continue reading “Thomas Hartung and colleagues | The future of organoid intelligence | Frontiers Forum Deep Dive 2023” »

Jul 9, 2024

Many-to-Many Networks: Multifunctional Modules for Multicellularity — Michael Elowitz

Posted by in categories: bioengineering, biotech/medical, computing, genetics

In multicellular organisms, many biological pathways exhibit a curious structure, involving sets of protein variants that bind or interact with one another in a many-to-many fashion. What functions do these seemingly complicated architectures provide? And can similar architectures be useful in synthetic biology? Here, Dr. Elowitz discusses recent work in his lab that shows how many-to-many circuits can function as versatile computational devices, explore the roles these computations play in natural biological contexts, and show how many-to-many architectures can be used to design synthetic multicellular behaviors.

About Michael Elowitz.
Michael Elowitz is a Howard Hughes Medical Institute Investigator and Roscoe Gilkey Dickinson Professor of Biology and Biological Engineering at Caltech. Dr. Elowitz’s laboratory has introduced synthetic biology approaches to build and understand genetic circuits in living cells and tissues. As a graduate student with Stanislas Leibler, Elowitz developed the Repressilator, an artificial genetic clock that generates gene expression oscillations in individual E. coli cells. Since then, his lab has continued to design and build synthetic genetic circuits, bringing a “build to understand” approach to bacteria, yeast, and mammalian cells. He and his group have shown that gene expression is intrinsically stochastic, or ‘noisy’, and revealed how noise functions to enable probabilistic differentiation, time-based regulation, and other functions. Currently, Elowitz’s lab is bringing synthetic approaches to understand and program multicellular functions including multistability, cell-cell communication, epigenetic memory, and cell fate control, and to provide foundations for using biological circuits as therapeutic devices. His lab also co-develops systems such as “MEMOIR” that allows cells to record their own lineage histories and tools for RNA export, and precise gene expression. Elowitz received his PhD in Physics from Princeton University and did postdoctoral research at Rockefeller University. Honors include the HFSP Nakasone Award, MacArthur Fellowship, Presidential Early Career Award, Allen Distinguished Investigator Award, the American Academy of Arts and Sciences, and election to the National Academy of Sciences.

Continue reading “Many-to-Many Networks: Multifunctional Modules for Multicellularity — Michael Elowitz” »

Jul 9, 2024

Machine-Learning Assisted Directed Evolution — Viviana Gradinaru — 10/25/2019

Posted by in categories: neuroscience, robotics/AI

“Machine-Learning Assisted Directed Evolution of Viral Vectors and Microbial Opsins for Minimally Invasive Neuroscience.” AI-4-Science Workshop, October 25, 2019 at Bechtel Residence Dining Hall, Caltech. Learn more about: — AI-4-science: https://www.ist.caltech.edu/ai4science/ — Events: https://www.ist.caltech.edu/events/ Produced in association with Caltech Academic Media Technologies. ©2019 California Institute of Technology.

Jul 9, 2024

Matter-wave interferometry puts new limits on ‘chameleon particles’

Posted by in category: particle physics

Gravity measurement benefits from optical lattice.

Jul 9, 2024

Europe’s Ariane 6 rocket succeeds in debut flight

Posted by in category: satellites

The European Space Agency’s member countries have endured a space access predicament as they have waited to have a functioning rocket in their toolbox.

But a new rocket, dubbed Ariane 6, just launched on its maiden mission after years of delays and hang-ups in the development process.

If successful, the space agency hopes that the Ariane 6 rocket system may go on to make the space agency more self-reliant and perhaps challenge SpaceX’s dominance in the global market for launching satellites.

Jul 9, 2024

Glial Cells Reprogrammed to Neurons for Brain Repair

Posted by in categories: biotech/medical, genetics, neuroscience

Summary: Researchers have discovered how glial cells can be reprogrammed into neurons through epigenetic modifications, offering hope for treating neurological disorders. This reprogramming involves complex molecular mechanisms, including the transcription factor Neurogenin2 and the newly identified protein YingYang1, which opens chromatin for reprogramming.

The study reveals how coordinated epigenome changes drive this process, potentially leading to new therapies for brain injury and neurodegenerative diseases.

Jul 9, 2024

Predicted Weakening of Ocean’s Overturning Circulation

Posted by in categories: biological, climatology, sustainability

“My work shows that we need to look more carefully at how ocean biology can affect the climate,” said Dr. Jonathan Lauderdale.


How will climate change influence the ocean’s circulation in the future? This is what a recent study published in Nature Communications hopes to address as a researcher from Massachusetts Institute of Technology (MIT) investigated how could hinder the ocean’s mechanisms of transferring carbon between the ocean floor and the planet’s atmosphere. This study holds the potential to help researchers, climate scientists, and the public better understand the long-term impacts of climate change and what steps that can be taken to mitigate them.

For the study, Dr. Jonathan Lauderdale, who is a Research Scientist in the Program in Atmospheres, Oceans, and Climate (PAOC) at MIT used models to challenge previous studies pertaining to the transfer of nutrients, specifically carbon, between the ocean floor and the Earth’s atmosphere, with an emphasis on a specific class of molecules called “ligands”. These previous studies dating back 40 years have hypothesized that weaker ocean circulation results in reduced levels of carbon dioxide being transferred to the atmosphere.

Continue reading “Predicted Weakening of Ocean’s Overturning Circulation” »

Jul 9, 2024

Lake and river foams study reveals high PFAS levels, even though underlying water may be less contaminated

Posted by in category: engineering

According to a new study of rivers and lakes in Wisconsin, natural foams from these bodies of water contain much higher concentrations of per-and polyfluoroalkyl substances (PFAS) than the water below them.

Thirty-six different kinds of PFAS compounds were analyzed in samples of both the foams and water surface microlayers of 43 Wisconsin rivers and lakes. The study, which is published in Environmental Science & Technology, also revealed that foams, generally off-white and found along shorelines, are not necessarily an indicator of elevated contamination levels in the entire water body.

“We studied many different lakes and found PFAS in all of them. The PFAS concentrations were high in the foams even if the concentrations in the water were relatively low,” said Christy Remucal, a professor with the University of Wisconsin–Madison Department of Civil and Environmental Engineering and interim director of the University of Wisconsin Aquatic Sciences Center.

Page 4 of 11,43012345678Last