Toggle light / dark theme

Year 2019 Dmt actually produced naturally in the human brain scientists are now believing it could be the spirit molecule of the human being which is also found in mice.


N, N-dimethyltryptamine (DMT), a psychedelic compound identified endogenously in mammals, is biosynthesized by aromatic-L-amino acid decarboxylase (AADC) and indolethylamine-N-methyltransferase (INMT). Whether DMT is biosynthesized in the mammalian brain is unknown. We investigated brain expression of INMT transcript in rats and humans, co-expression of INMT and AADC mRNA in rat brain and periphery, and brain concentrations of DMT in rats. INMT transcripts were identified in the cerebral cortex, pineal gland, and choroid plexus of both rats and humans via in situ hybridization. Notably, INMT mRNA was colocalized with AADC transcript in rat brain tissues, in contrast to rat peripheral tissues where there existed little overlapping expression of INMT with AADC transcripts.

Year 2020 Stroke victims could eventually get dmt infusions where they can recover quickly after a stroke.


N, N-dimethyltryptamine (DMT) is an endogenous ligand of the Sigma 1 receptor (Sig-1R) with documented in vitro cytoprotective properties against hypoxia. Our aim was to demonstrate the in vivo neuroprotective effect of DMT following ischemia-reperfusion injury in the rat brain.

Transient middle cerebral occlusion (MCAO) was induced for 60 min in male Wistar rats using the filament occlusion model under general anaesthesia. Before the removal of the filament the treatment group (n = 10) received an intra-peritoneal (IP) bolus of 1 mg/kg-body weight (bw) DMT dissolved in 1 ml 7% ethanol/saline vehicle, followed by a maintenance dose of 2 mg/Kg-bw/h delivered over 24 h via osmotic minipumps. Controls (n = 10) received a vehicle bolus only. A third group (n = 10) received a Sig-1R antagonist (BD1063, 1 mg/kg-bw bolus +2 mg/kg-bw/h maintenance) in parallel with the DMT. Lesion volume was measured by MRI 24 h following the MCAO. Shortly after imaging the animals were terminated, and the native brains and sera were removed. Four rats were perfusion fixed. Functional recovery was studied in two separate group of pre-trained animals (n = 8–8) using the staircase method for 30 days.

Research from the Babraham Institute has developed a method to “time jump” human skin cells by 30 years, turning back the aging clock for cells without losing their specialized function. Work by researchers in the Institute’s Epigenetics research program has been able to partly restore the function of older cells, as well as rejuvenating the molecular measures of biological age. The research is published today in the journal eLife, and while this topic is still at an early stage of exploration, it could revolutionize regenerative medicine.

What is regenerative medicine?

As we age, our cells’ ability to function declines and the accumulates marks of aging. Regenerative biology aims to repair or replace cells including old ones. One of the most important tools in regenerative biology is our ability to create “induced” stem cells. The process is a result of several steps, each erasing some of the marks that make cells specialized. In theory, these stem cells have the potential to become any cell type, but scientists aren’t yet able to reliably recreate the conditions to re-differentiate stem cells into all cell types.

Scientists have found a new drug treatment that can slow the progression of neurodegenerative disease in mice. The breakthrough research may offer fresh hope in tackling currently untreatable conditions such as Alzheimer’s disease.

The study—led by researchers at the University of Glasgow’s new Advanced Research Center (ARC) and published today in Science Signaling —found that by using a novel , which selectively activates a brain protein called the M1-receptor, the lifespan of mice suffering from neurodegeneration could be extended. The M1-receptor is a key brain protein, involved in memory and learning in people, and is an important potential target for neurodegenerative disease treatment.

Currently, Alzheimer’s disease is the most common form of neurodegenerative disease, affecting more then 850,000 people in the U.K. and over 55 million worldwide. The study demonstrates how many of the features of human Alzheimer’s disease, including memory loss and inflammation of the brain, could be treated in mice when they were given the new drug, known as a positive allosteric modulator (M1-PAM). The breakthrough described in this study indicates that, beyond treating symptoms, M1-PAMs may also be able to slow the overall progression of the disease.

Basically this is one of the cure all options for thousands of brain disorders.


Researchers in Portugal have discovered a new collaborative mechanism that unveils how neural stem cells sense injury and communicate for tissue repair, moving science closer to boosting neuron regeneration after brain damage.

Stroke and traumatic brain injury can permanently damage neurons and, depending on injury site, patients may experience long-term impairments of critical motor or cognitive functions. For this reason, the brain has a reserve of special cells—known as neural stem cells—that can partially activate after tissue damage.

However, though many stem cells begin the process of regeneration, complete activation only happens in a few, meaning only a small number of fresh neurons are created. Fewer still survive to re-populate the damaged site. Instead, the area is typically filled by glia, a common non-neural support cell, which acts as the “glue” of the nervous system.

Individuals suffering from severe depression may find relief from just a single dose of a synthetic version of psilocybin, or “magic mushrooms,” according to a new study published this week.

The findings, which were published Wednesday by The New England Journal of Medicine, come from a double-blind trial involving 233 “randomly assigned adults with treatment-resistant depression [who received] a single dose of a proprietary, synthetic formulation of psilocybin at a dose of 25 mg, 10 mg, or 1 mg (control), along with psychological support.”

“In this phase 2 trial involving participants with treatment-resistant depression, psilocybin at a single dose of 25 mg, but not 10 mg, reduced depression scores significantly more than a 1-mg dose over a period of 3 weeks but was associated with adverse effects,” the authors wrote in their conclusions, adding that “larger and longer trials, including comparison with existing treatments, are required to determine the efficacy and safety of psilocybin for this disorder.”

The views expressed are those of the authors and not necessarily those of the NHS, the National Institute for Health or Care Research, or the Department of Health and Social Care in the United Kingdom.

This article was updated on November 3, 2022, at NEJM.org.

A data sharing statement provided by the authors is available with the full text of this article at NEJM.org.

Ayahuasca is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for medicinal, spiritual, and cultural purposes. It is prepared by boiling in water an admixture of the Amazonian vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, with plants containing N, N-dimethyltryptamine, usually Psychotria viridis. While previous studies have focused on the detection and quantification of the alkaloids present in the drink, less attention has been given to other nonalkaloid components or the composition of the solids suspended in the beverage, which may also affect its psychoactive properties. In this study, we used nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to study the composition of ayahuasca samples, to determine their alkaloid qualitative and quantitative profiles, as well as other major soluble and nonsoluble components. For the first time, fructose was detected as a major component of the samples, while harmine (a β-carboline previously described as an abundant alkaloid in ayahuasca) was found to be present in the solids suspended in the beverage. In addition, N, N-dimethyltryptamine (DMT), harmine, tetrahydroharmine, harmaline, and harmol were identified as the major alkaloids present in extracts of all samples. Finally, a novel, easy, and fast method using quantitative NMR was developed and validated to simultaneously quantify the content of these alkaloids found in each ayahuasca sample.

Ayahuasca, commonly translated from the Quechua language as “vine of the spirits” or “vine of the dead”, is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for a variety of medicinal, spiritual, and cultural purposes.1 It is prepared by boiling in water an admixture of the vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, and other plants containing N, N-dimethyltryptamine (DMT), usually Psychotria viridis ( Figure Figure1 1 ) or Diplopterys cabrerana, (where the preparation name is usually referred to as yagé).2.

An older universe existed before the Big Bang, and proof for its existence can still be found in black holes, according to a Nobel Prize-winning physicist. Sir Roger Penrose made the assertion after receiving the award for advances in Einstein’s general theory of relativity and proof of black hole existence. Sir Roger contends that inexplicable regions of electromagnetic radiation in the sky, known as ‘Hawking Points,’ represent vestiges of an earlier universe.