Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Quantum-enhanced interferometry amplifies detection of tiny laser beam shifts and tilts

A quantum trick based on interferometric measurements allows a team of researchers at LMU to detect even the smallest movements of a laser beam with extreme sensitivity.

Precisely measuring minute shifts or slight tilts of a laser beam is crucial in many scientific and technological applications, such as atomic force microscopy. So-called weak value amplification (WVA), a method that grew out of thinking about the foundations of quantum mechanics, has already shown that under certain conditions the output signal of an interferometer changes markedly when the beams inside it are altered only minimally. An interferometer is a measuring device that can detect such tiny differences by comparing overlapping light waves.

LMU physicist Carlotta Versmold and her colleagues, all members of the MCQST Cluster of Excellence, working together with researchers at Tel Aviv University, have now extended this type of measurement. The team recently developed a trick that also amplifies changes in the incoming beam. This makes it possible to carry out far more precise measurements that were previously difficult to achieve. A laser beam reflected from a distant window, for example, could pick up vibrations in the glass caused by conversations inside the building, allowing those conversations to be overheard.

Dark stars could help solve three pressing puzzles of the high-redshift universe

A recent study provides answers to three seemingly disparate yet pressing cosmic dawn puzzles. Specifically, the authors show how dark stars could help explain the unexpected discovery of “blue monster” galaxies, the numerous early overmassive black hole galaxies, and the “little red dots” in images from the James Webb Space Telescope (JWST).

The work is published in the journal Universe. It was led by Colgate Assistant Professor of Physics and Astronomy Cosmin Ilie, in collaboration with Jillian Paulin at the University of Pennsylvania, Andreea Petric of the Space Telescope Science Institute, and Katherine Freese of the University of Texas at Austin.

The first stars in the universe form in dark matter-rich environments, at the centers of dark matter microhalos. Roughly a few hundred million light-years after the Big Bang, molecular clouds of hydrogen and helium cooled sufficiently well to begin a process of gravitational collapse, which eventually led to the formation of the first stars.

First map of nerve circuitry in bone helps physicians identify key signals for bone repair

When a house catches on fire, we assume that a smoke alarm inside will serve one purpose and one purpose only: warn the occupants of danger. But imagine if the device could transform into something that could fight the fire as well.

In a new study in Science, a multi-institutional team led by researchers at Johns Hopkins Medicine has shown in mice that the body’s “pain alarms”―sensory neurons—actually have such a dual function. In the event of a bone fracture, these nerves not only report the trauma, but they also morph into “reconstruction commanders” that actively direct the cellular workforce to rebuild the skeleton.

New sodium-sulfur battery may offer safer, cheaper alternative to lithium

Due to our ever-increasing reliance on electronics, researchers are always on the lookout for battery materials with more desirable qualities. Common battery materials, like lithium, can be prone to disadvantages like overheating and material sourcing issues, leading to safety risks and higher costs.

Now, researchers from China have revealed a new battery design that may offer a better alternative to lithium. The new study, published in Nature, describes a sodium and sulfur-based, anode-free design offering a high voltage. The sodium–sulfur (Na–S) batteries are a promising alternative to lithium-based batteries due to sodium’s abundance and potential for high energy storage.

One image is all robots need to find their way

While the capabilities of robots have improved significantly over the past decades, they are not always able to reliably and safely move in unknown, dynamic and complex environments. To move in their surroundings, robots rely on algorithms that process data collected by sensors or cameras and plan future actions accordingly.

Researchers at Skolkovo Institute of Science and Technology (Skoltech) have developed SwarmDiffusion, a new lightweight Generative AI model that can predict where a robot should go and how it should move relying on a single image. SwarmDiffusion, introduced in a paper pre-published on the server arXiv, relies on a diffusion model, a technique that gradually adds noise to input data and then removes it to attain desired outputs.

“Navigation is more than ‘seeing,” a robot also needs to decide how to move, and this is where current systems still feel outdated,” Dzmitry Tsetserukou, senior author of the paper, told Tech Xplore.

Replication efforts suggest ‘smoking gun’ evidence isn’t enough to prove quantum computing claims

A group of scientists, including Sergey Frolov, professor of physics at the University of Pittsburgh, and co-authors from Minnesota and Grenoble have undertaken several replication studies centered around topological effects in nanoscale superconducting or semiconducting devices. This field is important because it can bring about topological quantum computing, a hypothetical way of storing and manipulating quantum information while protecting it against errors.

In all cases, they found alternative explanations of similar data. While the original papers claimed advances for quantum computing and made their way into top scientific journals, the individual follow-ups could not make it past the editors at those same journals.

Reasons given for its rejection included that, being a replication, it was not novel; that, after a couple of years, the field had moved on. But replications take time and effort and the experiments are resource-intensive and cannot happen overnight. And important science does not become irrelevant on the scale of years.

Sensor lights up to reveal scopolamine, a common substance used for sexual assault

A team from the Universitat Politècnica de València (UPV) has led the development of a new sensor capable of quickly and easily detecting scopolamine, one of the substances most commonly used in crimes of chemical submission, especially in sexual assaults. The sensor detects the presence of this drug in less than five minutes with high sensitivity. The research is published in the journal Angewandte Chemie International Edition.

“Scopolamine is a substance that is difficult to detect using conventional methods, especially when found in drinks. For this reason, our group from the IDM Institute at the UPV set out to develop new, simple tools that can immediately alert us to its presence,” says Vicente Martí Centelles, a researcher at the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) at the UPV.

Simultaneous packing structures in superionic water may explain ice giant magnetic fields

Superionic water—the hot, black and strangely conductive form of ice that exists in the center of distant planets—was predicted in the 1980s and first recreated in a laboratory in 2018. With each closer look, it continues to surprise researchers.

In a recent study published in Nature Communications, a team including researchers at the Department of Energy’s SLAC National Accelerator Laboratory has made a surprising discovery: Multiple atomic packing structures can coexist under identical conditions in superionic water.

Quantum phenomenon enables a nanoscale mirror that can be switched on and off

Controlling light is an important technological challenge—not just at the large scale of optics in microscopes and telescopes, but also at the nanometer scale. Recently, physicists at the University of Amsterdam published a clever quantum trick that allows them to make a nanoscale mirror that can be turned on and off at will.

The work is published in the journal Light: Science & Applications.

Scientists Made a Flash of Light Disappear Inside a Liquid

Liquids and solutions may look simple, but on the molecular scale they are constantly shifting and reorganizing. When sugar dissolves in water, each sugar molecule quickly becomes surrounded by fast moving water molecules. Inside living cells, the situation is even more intricate. Tiny liquid drople

/* */