Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How small can optical computers get? Scaling laws reveal new strategies

The research, published in Nature Communications, addresses one of the key challenges to engineering computers that run on light instead of electricity: making those devices small enough to be practical. Just as algorithms on digital computers require time and memory to run, light-based systems also require resources to operate, including sufficient physical space for light waves to propagate, interact and perform analog computation.

Lead authors Francesco Monticone, associate professor of electrical and computer engineering, and Yandong Li, Ph.D. ‘23, postdoctoral researcher, revealed scaling laws for free-space optics and photonic circuits by analyzing how their size must grow as the tasks they perform become more complex.

Nature-inspired hydrogel offers power-free thermal management

The poplar (Populus alba) has a unique survival strategy: when exposed to hot and dry conditions, it curls its leaves to expose the ventral surface, reflecting sunlight, and at night, the moisture condensed on the leaf surface releases latent heat to prevent frost damage. Plants have evolved such intricate mechanisms in response to dynamic environmental fluctuations in diurnal and seasonal temperature cycles, light intensity, and humidity, but there have been few instances of realizing such a sophisticated thermal management system with artificial materials.

Now, a KAIST research team has developed an artificial material that mimics the thermal management strategy of the poplar leaf, significantly increasing the applicability of power-free, self-regulating thermal management technology in applications such as building facades, roofs, and temporary shelters. The paper is published in the journal Advanced Materials.

The research team led by Professor Young Min Song of the School of Electrical Engineering, in collaboration with Professor Dae-Hyeong Kim’s team at Seoul National University, has developed a flexible hydrogel-based “Latent-Radiative Thermostat (LRT)” that mimics the natural heat regulation strategy of the poplar leaf.

Watching gold’s atomic structure change at 10 million times Earth’s atmospheric pressure

The inside of giant planets can reach pressures more than one million times the Earth’s atmosphere. As a result of that intense pressure, materials can adopt unexpected structures and properties. Understanding matter in this regime requires experiments that push the limits of physics in the laboratory.

In a recent paper published in Physical Review Letters, researchers at Lawrence Livermore National Laboratory (LLNL) and their collaborators conducted such experiments with gold, achieving the highest-pressure structural measurement ever made for the material. The results, which show gold switching structure at 10 million times the Earth’s atmospheric pressure, are essential for planetary modeling and fusion science.

“These experiments uncover the atomic rearrangements that occur at some of the most extreme pressures achievable in laboratory experiments,” said LLNL scientist and author Amy Coleman.

New scalable single-spin qubits could simplify future processors

Quantum computers, which operate leveraging effects rooted in quantum mechanics, have the potential of tackling some computational and optimization tasks that cannot be solved by classical computers. Instead of bits (i.e., binary digits), which are the basic units of information in classical computers, quantum computers rely on so-called qubits.

Qubits, the quantum equivalent of bits, are not restricted to binary states (i.e., 0 or 1), but can exist in superpositions of these states. One common type of qubits used to fabricate quantum processors are so-called semiconductor .

Quantum dots are small electrically confined regions that can trap individual charge carriers. To manipulate these qubits, most quantum engineers currently rely on high-frequency , as opposed to low-frequency baseband signals.

Humans bring gender bias to their interactions with AI, finds study

Humans bring gender biases to their interactions with Artificial Intelligence (AI), according to new research from Trinity College Dublin and Ludwig-Maximilians Universität (LMU) Munich.

The study involving 402 participants found that people exploited female-labeled AI and distrusted male-labeled AI to a comparable extent as they do human partners bearing the same gender labels.

Notably, in the case of female-labeled AI, the study found that exploitation in the Human-AI setting was even more prevalent than in the case of human partners with the same gender labels.

Theia and Earth were neighbors, new research suggests

About 4.5 billion years ago, the most momentous event in the history of Earth occurred: a huge celestial body called Theia collided with the young Earth. How the collision unfolded and what exactly happened afterward has not been conclusively clarified. What is certain, however, is that the size, composition, and orbit of Earth changed as a result—and that the impact marked the birth of our constant companion in space, the moon.

What kind of body was it that so dramatically altered the course of our planet’s development? How big was Theia? What was it made of? And from which part of the solar system did it hurtle toward Earth?

Finding answers to these questions is difficult. After all, Theia was completely destroyed in the collision. Nevertheless, traces of it can still be found today, for example in the composition of present-day Earth and the moon.

Bright squeezed vacuum reveals hidden quantum effects in strong-field physics

In a new study published in Nature Physics, researchers have demonstrated that quantum light, particularly bright squeezed vacuum (BSV), can drive strong-field photoemission at metal needle tips.

Attosecond science—the study of electron behavior on timescales of 10⁻¹⁸ seconds—has traditionally relied on intense laser pulses that correspond to “coherent states” of light. They function as classical electromagnetic waves with predictable, oscillating electric fields that push electrons to high energies.

When electrons rescatter from surfaces under this intense illumination, they produce characteristic signatures: a plateau in their energy spectrum followed by a sharp cut-off. These features have become central to probing matter with attosecond precision.

Airborne sensors map ammonia plumes in California’s Imperial Valley

A recent study led by scientists at NASA’s Jet Propulsion Laboratory in Southern California and the nonprofit Aerospace Corporation shows how high-resolution maps of ground-level ammonia plumes can be generated with airborne sensors, highlighting a way to better track the gas.

A key chemical ingredient of fine particulate matter—tiny particles in the air known to be harmful when inhaled—ammonia can be released through agricultural activities such as livestock farming and geothermal power generation as well as natural geothermal processes. Because it’s not systematically monitored, many sources of the pungent gas go undetected.

Published in Atmospheric Chemistry and Physics, the study focuses on a series of 2023 research flights that covered the Imperial Valley to the southeast of the Salton Sea in inland Southern California, as well as the Eastern Coachella Valley to its northwest. Prior satellite-based research has identified the Imperial Valley as a prolific source of gaseous ammonia.

Rethinking where language comes from: Framework reveals complex interplay of biology and culture

A new study challenges the idea that language stems from a single evolutionary root. Instead, it proposes that our ability to communicate evolved through the interaction of biology and culture, and involves multiple capacities, each with different evolutionary histories. The framework, published in Science, unites discoveries across disciplines to explain how the ability to learn to speak, develop grammar, and share meaning converged to create complex communication.

For centuries, philosophers and scientists have wrestled with understanding how human language came about. Language defines us as a species, yet its origins have remained a mystery. In a remarkable international collaboration, 10 experts from different disciplines present a unified framework to address this enduring puzzle, harnessing powerful new methods and insights from their respective scientific domains.

“Crucially, our goal was not to come up with our own particular explanation of language evolution,” says first author Inbal Arnon, “Instead, we wanted to show how multifaceted and biocultural perspectives, combined with newly emerging sources of data, can shed new light on old questions.”

Golden Fractal Jubilee: 50 Years of Bridging Art and Science

We investigate the artistic patterns generated by the pouring technique made famous by Jackson Pollock. To determine if poured patterns can be distinguished based on the artist age, we apply computer analysis techniques to paintings created under controlled conditions by children (four to six years old) and adults (18–25 years old) pouring fluid paint onto horizontal sheets of paper. Both groups of art display a high visual complexity due to the multi-scaled paint structure generated by the pouring process. However, the two groups demonstrate statistically significant differences when this structure is quantified using both multifractal and lacunarity analysis. Whereas the multifractal analysis probes the scaling characteristics of the patterns, lacunarity quantifies clustering in their spatial distributions. We find that the children’s paintings are characterized by smaller fractal dimensions (indicating a reduced contribution of fine structure) and by larger lacunarity parameters (indicating a larger clustering of this fine structure) compared to the adult paintings. We compare these results to those of two famous poured works by Jackson Pollock and Max Ernst as a preliminary step to investigating the potential origins of the fractal and lacunarity variations across artists, which includes motions related to biomechanical balance. Finally, to examine the impact on audiences, we ask observers to rate their perceptions of the paintings. These ratings indicate a rise in interest and pleasantness for paintings with lower fractal dimensions and larger lacunarity.

The interface between art and science has grown over the past three decades with the advent of statistical analysis of the visual characteristics of art works. Although such studies now encompass a broad range of artistic styles, substantial research has been devoted to paintings generated by pouring paint onto the canvas rather than by using traditional brush contact. A number of Twentieth Century artists pursued this technique, including the European Surrealists [1], the Canadian Les Automatists [2], and the American Abstract Expressionists [3]. The latter featured the most famous proponent of the ‘pouring’ technique, Jackson Pollock [4].

Celebrated as Action Painting, these poured works serve as records of the artists’ encounters with their canvases. In Pollock’s case, this encounter involved him painting in the three-dimensional space above the canvas and then letting gravity condense the fluid paint onto the two-dimensional plane of the canvas laid out across the floor. This dynamic process often unfolded at frantic painting speeds, inviting speculation from art critics and the public alike as to whether it is possible to control the pouring technique. Perhaps all artists are instead destined to generate haphazard records of their encounters with the canvas. This debate has been fueled by the lack of traditional compositional strategies displayed in typical poured works — no center of focus, no left or right, and no up or down [3, 4].

/* */