Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Spontaneous emission behaves contrary to predictions in photonic time crystals

A new study reveals that spontaneous emission, a key phenomenon in the interaction between light and atoms, manifests in a new form within a photonic time crystal. This research, led by a KAIST team, not only overturns existing theory but further predicts a novel phenomenon: spontaneous emission excitation. The findings are published in the journal Physical Review Letters.

Professor Bumki Min’s research team from the KAIST Department of Physics, in collaboration with Professor Jonghwa Shin of the Department of Materials Science and Engineering, Professor Wonju Jeon of the Department of Mechanical Engineering, Professor Gil Young Cho of the Department of Physics, and researchers from IBS, UC Berkeley, and the Hong Kong University of Science and Technology, announced that they have proven that the decay rate in a photonic time crystal is, on the contrary, enhanced rather than being “extinguished,” as suggested by a paper published in Science in 2022. Furthermore, they predicted a new process—spontaneous emission excitation—where an atom transitions from its to an while simultaneously emitting a photon.

Spontaneous emission is the process by which an atom intrinsically emits a photon and is fundamental to quantum optics and photonic device research. Until now, control over spontaneous emission has been achieved by designing spatial structures like resonators or . However, the advent of photonic time crystals, which periodically modulate the refractive index of a medium over time, has drawn attention to the potential for control along the time axis.

Parallel atom-photon entanglement paves way for future quantum networking

A new platform developed by Illinois Grainger engineers demonstrates the utility of a ytterbium-171 atom array in quantum networking. Their work represents a key step toward long-distance quantum communication.

Researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have introduced a scalable platform for quantum networking with a ytterbium-171 array.

Their work, published in Nature Physics, represents a major step toward larger quantum networks and has promising implications for modular quantum computation.

Dark matter detector succeeds in performing measurements with nearly no radioactive interference

In their search for dark matter, scientists from the XENON Collaboration are using one of the world’s most sensitive dark matter detectors, XENONnT at the Gran Sasso Laboratory of the National Institute of Nuclear Physics INFN in Italy, to detect extremely rare particle interactions. These could provide clues about the nature of dark matter. The problem, however, is that tiny amounts of natural radioactivity generate background events that can mask these weak signals.

The XENONnT experiment has made a breakthrough by significantly reducing one of the most problematic contaminants— , a radioactive gas. For the first time, the research team has succeeded in reducing the detector’s radon-induced radioactivity to a level a billion times lower than the very low natural radioactivity of the human body.

The underlying technology, which the XENONnT consortium reports in the current issue of the Physical Review X, was developed by a team led by particle physicist Prof Christian Weinheimer from the University of Münster.

Extreme pressure pushes honeycomb crystal toward quantum spin liquid, hinting at new qubit designs

The future of computing lies in the surprising world of quantum physics, where the rules are much different from the ones that power today’s devices. Quantum computers promise to tackle problems too complex for even the fastest supercomputers running on silicon chips. To make this vision real, scientists around the world are searching for new quantum materials with unusual, almost otherworldly properties.

One of the more intriguing candidates is called a quantum spin liquid—a state of matter where electron spins never settle down, even at the coldest temperatures in the universe. To date, however, preparing such a quantum state in a lab has proven stubbornly elusive. In a collaborative project with multiple institutions, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory now report coming tantalizingly closer.

As explained by Argonne Senior Physicist and Group Leader Daniel Haskel, in these materials, it’s not atoms that stay fluid as in an ordinary liquid, but the tiny magnetic orientations—or spins—of electrons. Each spin wants to “get along” with its neighbors by aligning in a way that keeps everyone content. But when the spins are pushed closer together under pressure, satisfying every neighbor becomes impossible.

Twisted graphene reveals double-dome superconductivity controlled by electric field

Superconductivity is a phenomenon where certain materials can conduct electricity with zero resistance. Obviously, this has enormous technological advantages, which makes superconductivity one of the most intensely researched fields in the world.

But is not straightforward. Take, for example, the double-dome effect. When scientists plot where superconductivity appears in material as they change how many electrons are in it, the material’s superconducting regions sometimes look like two separate “domes” on a graph.

In other words, the material becomes superconducting, then stops, then becomes superconducting again as we keep changing its .

Mission Impossible? Asteroid the Size of a House Poses New Challenge for Hayabusa2

Astronomers have discovered that asteroid 1998 KY26, the target of Japan’s Hayabusa2 extended mission, is far smaller and faster-spinning than previously thought. Astronomers have conducted a new study of the asteroid 1998 KY26 using observatories across the globe, including the European Southern

An Asteroid’s Billion-Year-Old Secret Is a “Genuine Surprise” to Scientists

A group of scientists, including researchers from the University of Tokyo, has found evidence that liquid water once moved through the body of the asteroid that eventually gave rise to the near-Earth asteroid Ryugu. Remarkably, this activity occurred more than a billion years after the asteroid originally formed.

The discovery comes from the study of tiny rock fragments collected by the Hayabusa2 spacecraft of the Japan Aerospace Exploration Agency (JAXA). The results challenge the long-standing belief that water-related processes on asteroids happened only during the earliest stages of solar system history. This new understanding could influence models of how Earth itself was formed.

Although scientists have developed a fairly detailed picture of how the solar system came together, important questions remain. One of the biggest mysteries is how Earth acquired such an abundance of water. For decades, researchers have suspected that carbon-rich asteroids, such as Ryugu, which were created from ice and dust in the outer regions of the solar system, played a major role in supplying that water. Ryugu was visited by the Hayabusa2 mission in 2018, marking the first time a spacecraft both studied such an asteroid directly and returned samples to Earth. These precious materials are now helping researchers address some of the most fundamental questions about the origins of our planet.

Scientists Develop the World’s First Rechargeable Hydride Ion Battery

Scientists have built the first rechargeable hydride ion battery. Hydride ions (H⁻) have drawn interest as potential charge carriers for future electrochemical devices because of their extremely low mass and high redox potential. Yet, progress has been limited since no electrolyte has been able to

Tiny Quantum Dots Could Transform How We See in the Dark

Scientists have created eco-friendly “quantum inks” that can replace toxic metals in infrared detectors. The breakthrough could make night vision faster, cleaner, and more accessible to a wider range of industries.

Toxic Metals vs. Infrared Innovation

Manufacturers of infrared cameras are facing a growing challenge. Many of the materials used in today’s detectors, including toxic heavy metals, are now restricted under environmental regulations. As a result, companies often find themselves forced to choose between maintaining performance or meeting compliance standards.

/* */