Toggle light / dark theme

Some paradoxes are mind blowing and others are… not. But why? Here are 24 paradoxes, ranked from least to most paradoxical by my former students.

Support the channel:
Patreon: / chalktalkmath.

Timestamps:
0:00 Intro.
1:39 Veridical Paradoxes.
4:14 Philosophy and Science.
9:51 (More) Veridical Paradoxes.
12:45 Infinity is Weird.
16:56 Self-referential Paradoxes.
18:50 Miscellaneous Paradoxes.
21:59 The Top Three.
24:31 Patreon Announcement.

References.

After more than a decade of work, researchers have reached a major milestone in their efforts to re-engineer life in the lab, putting together the final chromosome in a synthetic yeast (Saccharomyces cerevisiae) genome.

The researchers, led by a team from Macquarie University in Australia, chose yeast as a way to demonstrate the potential for producing foodstuffs that could survive the rigors of a changing climate or widespread disease.

It’s the first time a synthetic eukaryotic genome has been constructed in full, following on from successes with simpler bacteria organisms. It’s a proof-of-concept for how more complex organisms, like food crops, could be synthesized by scientists.

How could CRISPR help cure diseases? Feng Zhang, Professor of Biological Engineering at MIT, describes how CRISPR works like a search box for DNA. Using matching RNA proteins, it can find specific spots on the DNA where a gene needs to be edited or repaired. Through this method, it might be possible to go into the human genome and fix the genes that cause sickle cell disease, blindness, or neurodegeneration! How Does CRISPR Work? With Feng Zhang: https://youtu.be/ylgg7yZMJSs Among the world’s largest science centers, the Museum of Science engages millions of people each year to the wonders of science and technology through interactive exhibitions, digital programs, giant screen productions, and preK – 12 EiE® STEM curricula through the William and Charlotte Bloomberg Science Education Center. Established in 1830, the Museum is home to such iconic experiences as the Theater of Electricity, the Charles Hayden Planetarium, and the Mugar Omni Theater. Around the world, the Museum is known for digital experiences such as Mission: Mars on Roblox, and traveling exhibitions such as the Science Behind Pixar.

Key cells in the brain, neurons, form networks by exchanging signals, enabling the brain to learn and adapt at incredible speed. Researchers at the Delft University of Technology in The Netherlands (TU Delft) have developed a 3D-printed brain-like environment where neurons grow similarly to a real brain.

Using tiny nanopillars, they mimic the soft neural tissue and the brain extracellular matrix fibers. This model provides new insights into how neurons form networks, as well as a novel tool to understand in future how this process may change in neurological disorders such as Alzheimer’s, Parkinson’s disease, and autism spectrum disorders.

The work is published in the journal Advanced Functional Materials.

Try Recraft, a premium image generation and editing tool for creators and teams, and get $12 off with my promo code BERMAN12: https://go.recraft.ai/matthew_berman.

Join My Newsletter for Regular AI Updates 👇🏼
https://forwardfuture.ai.

My Links 🔗
👉🏻 Subscribe: / @matthew_berman.
👉🏻 Twitter: / matthewberman.
👉🏻 Discord: / discord.
👉🏻 Patreon: / matthewberman.
👉🏻 Instagram: / matthewberman_ai.
👉🏻 Threads: https://www.threads.net/@matthewberma… LinkedIn: / forward-future-ai Media/Sponsorship Inquiries ✅ https://bit.ly/44TC45V Links: https://twitter.com/DarioAmodei/status/1884https://darioamodei.com/on-deepseek-a… Disclosure: I am a small investor in Groq.
👉🏻 LinkedIn: / forward-future-ai.

Media/Sponsorship Inquiries ✅

OpenAI’s o3 AI model achieved human-level performance on the ARC-AGI intelligence test, surpassing previous AI benchmarks. While its adaptability is impressive, questions remain about whether this marks real progress toward artificial general intelligence (AGI) or just test-specific optimization.

The fact that the cold, dry Mars of today had flowing rivers and lakes several billion years ago has puzzled scientists for decades. Now, Harvard researchers think they have a good explanation for a warmer, wetter ancient Mars.

Building on prior theories describing the Mars of yore as a hot again, cold again place, a team led by researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have determined the chemical mechanisms by which ancient Mars was able to sustain enough warmth in its early days to host water, and possibly life.

“It’s been such a puzzle that there was on Mars, because Mars is further from the sun, and also, the sun was fainter early on,” said Danica Adams, NASA Sagan Postdoctoral Fellow and lead author of the new paper in Nature Geoscience.

Researchers are exploring multi-level atomic interactions to enhance quantum entanglement. Using metastable states in strontium, they demonstrate how photon.

A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

Muon spin rotation (µSR) spectroscopy is a powerful technique that helps to study the behavior of materials at the atomic level. It involves using muons—subatomic particles similar to protons but with a lighter mass. When introduced into a material, muons interact with local magnetic fields, providing unique insights into the material’s structure and dynamics, especially for highly reactive species such as radicals.

In a new study, a team of researchers led by Associate Professor Shigekazu Ito, from the School of Materials and Chemical Technology, Institute of Science Tokyo, Japan, utilized µSR spectroscopy to investigate the regioselective muoniation of peri-trifluoromethylated 12-phosphatetraphene 1. This compound is a phosphorus congener (a variant of a common chemical structure).

The process of µSR spectroscopy initially involves the formation of a muonium (Mu), which is formed when a positively charged muon (µ+) captures an electron (e). This process continues as the reaction of a muonium (Mu = [µ+e]) with the phosphorus-containing compound, resulting in the formation of a muoniated radical at the phosphorus site.