Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

An ultra-fast quantum tunneling device for the 6G terahertz era

A research team affiliated with UNIST has unveiled a quantum device, capable of ultra-fast operation, a key step toward realizing technologies like 6G communications. This innovation overcomes a major hurdle that has long limited the durability of such devices under high electrical fields.

Professor Hyeong-Ryeol Park from the Department of Physics at UNIST, in collaboration with Professor Sang Woon Lee at Ajou University, has developed a terahertz quantum device that can operate reliably without suffering damage from intense electric fields—something that has been a challenge for existing technologies.

How does glass ‘shake’ and why does it start flowing when pushed hard enough?

Glassy materials are everywhere, with applications far exceeding windowpanes and drinking glasses. They range from bioactive glasses for bone repair and amorphous pharmaceuticals that boost drug solubility to ultra-pure silica optics used in gravitational-wave detectors. In principle, any substance can become glass if its hot liquid is cooled fast enough to avoid forming an ordered crystal.

A distinguishing feature of glass is that its atoms freeze into an irregular, disordered arrangement. This stands in contrast to crystals, where atoms sit in a regular pattern. This disorder gives glass many of its unique and useful properties, but scientists still struggle to understand how atomic-scale disorder produces the properties observed in everyday glasses.

Superconducting detector captures hot spots with submicron resolution

A research team from Osaka Metropolitan University proposed using a current-biased kinetic inductance detector with submicron 400 megapixels to image hot spots induced by a localized external stimulus over a 15 × 15 mm2 area. The team utilized a delay-line technique to trace the propagation of internal signals for a pair of signals arising from each hot spot.

Further, they used the timestamps of signal arrivals at the electrodes to determine the position of each hot spot (x, y). Because the signal velocity inside the detector is ultrafast at about 20% the speed of light, a readout circuit with a temporal resolution faster than 250 ps is necessary to resolve the position of a hot spot with a precision of 1.5 μm, which is the size of a meander pitch.

The research is published in the journal AIP Advances.

Engines of light: New study suggests we could increase useful energy obtained from sunlight

Physicists from Trinity College Dublin believe new insights into the behavior of light may offer a new means of solving one of science’s oldest challenges—how to turn heat into useful energy.

Their theoretical leap forwards, which will now be tested in the lab, could influence the development of specialized devices that would ultimately increase the amount of energy we can capture from sunlight (and lamps and LEDs) and then repurpose to perform useful tasks.

The work has just been published in the journal, Physical Review A.

Laser pulse ‘sculpting’ unlocks new control over particle acceleration

In high-intensity laser–matter interactions, including laser-induced particle acceleration, physicists generally want to work with the highest possible focused laser peak power, which is the ratio of energy per unit area to pulse duration. Therefore, for the same pulse energy and focus, the highest peak intensity can be achieved with the shortest pulse duration.

According to Károly Osvay, head of the National Laser-Initiated Transmutation Laboratory (SZTE NLTL) at the University of Szeged, it has long been known that by changing the so-called spectral phase in a laser pulse, it is possible to ensure that the components of the pulse reach the target in a specific temporal sequence. This ultimately allows the temporal shape of the pulse to be influenced.

“We looked at what happens when we change the relative timing of the frequency components. We confirmed that the order of the components influences which particles we can accelerate best and to what extent. In the case of deuterated solid-state foils, for example, we can change the ratio of accelerated proton and deuteron ions, as well as the ratio of the forward and backward accelerated species. All this is fundamentally influenced by the complex temporal shape of the laser pulse,” said the researcher.

How your brain keeps time: Consistent probability calculations help you react rapidly

Humans respond to environments that change at many different speeds. A video game player, for example, reacts to on-screen events unfolding within hundreds of milliseconds or over several seconds. A boxer anticipates an opponent’s moves—even when their timing differs from that of previous opponents. In each case, the brain predicts when events occur, prepares for what comes next and flexibly adapts to the demands of the situation.

A study by neuroscientists from the Ernst Strüngmann Institute of the Max Planck Society, Goethe University Frankfurt, the Max Planck Institute for Empirical Aesthetics, and New York University, explains how the human brain predicts the timing of future events.

The research, published in the journal Proceedings of the National Academy of Sciences, shows that the brain continuously estimates how likely something is to happen within the next three seconds—and uses this estimate to prepare fast and accurate reactions.

‘Motivation brake’ may explain why it’s so hard to get started on an unpleasant task

Most of us know the feeling: maybe it is making a difficult phone call, starting a report you fear will be criticized, or preparing a presentation that’s stressful just to think about. You understand what needs to be done, yet taking that very first step feels surprisingly hard.

When this difficulty becomes severe, it is known medically as avolition. People with avolition are not lazy or unaware: they know what they need to do, but their brain seems unable to push the “go” button.

Avolition is commonly seen in conditions such as depression, schizophrenia, and Parkinson’s disease, and it seriously disrupts a person’s ability to manage daily life and maintain social functions.

OLED lighting: Corrugated panel design extends longevity and efficiency

The organic light emitting diodes—known widely as OLEDs—that create vibrant smartphone displays could illuminate rooms, but current designs burn out too quickly at the high brightness needed for room lighting. A new approach overcomes this tradeoff by building OLEDs on a corrugated surface, packing more emitting material into a given lighting panel area to produce the same amount of light while operating the OLED itself at lower brightness.

This corrugated panel strategy increased device lifespan by a factor of 2.7 compared to flat panels operated at the same current, according to a study led by the University of Michigan in collaboration with OLEDWorks and The Pennsylvania State University.

“While the problems we solved along the way were daunting, in the end the new device performed tremendously better than predecessors. It’s rewarding to see our ideas point towards a valid path to improve the efficiency and lifetime of OLED lighting,” said Max Shtein, a professor of materials science and engineering and chemical engineering at U-M and co-corresponding author of the study published in Nature Communications.

Perovskite solar cells maintain 95% of power conversion efficiency after 1,100 hours at 85°C with new molecular coating

Scientists have found a way to make perovskite solar cells not only highly efficient but also remarkably stable, addressing one of the main challenges holding the technology back from widespread use.

Perovskite has long been hailed as a game-changer for the next generation of solar power. However, advances in material design are still needed to boost the efficiency and durability of solar panels that convert sunlight into electricity.

What Happens When Light Gains Extra Dimensions

Shaped quantum light is turning ordinary photons into powerful tools for the future of technology.

A global group of scientists, including researchers from the UAB, has published a new review in Nature Photonics exploring a rapidly developing area of research called quantum structured light. This field is changing how information can be sent, measured, and processed by combining quantum physics with carefully designed patterns of light in space and time. By doing so, researchers can create photons capable of carrying far more information than traditional light.

From qubits to higher dimensional quantum states.

/* */