Menu

Blog

Page 2

Nov 8, 2024

Frontiers: They basically controlled butterflies in a virtual environment wirelessly with human organoids

Posted by in categories: biological, robotics/AI, virtual reality

Wetware computing and organoid intelligence is an emerging research field at the intersection of electrophysiology and artificial intelligence. The core concept involves using living neurons to perform computations, similar to how Artificial Neural Networks (ANNs) are used today. However, unlike ANNs, where updating digital tensors (weights) can instantly modify network responses, entirely new methods must be developed for neural networks using biological neurons. Discovering these methods is challenging and requires a system capable of conducting numerous experiments, ideally accessible to researchers worldwide. For this reason, we developed a hardware and software system that allows for electrophysiological experiments on an unmatched scale. The Neuroplatform enables researchers to run experiments on neural organoids with a lifetime of even more than 100 days. To do so, we streamlined the experimental process to quickly produce new organoids, monitor action potentials 24/7, and provide electrical stimulations. We also designed a microfluidic system that allows for fully automated medium flow and change, thus reducing the disruptions by physical interventions in the incubator and ensuring stable environmental conditions. Over the past three years, the Neuroplatform was utilized with over 1,000 brain organoids, enabling the collection of more than 18 terabytes of data. A dedicated Application Programming Interface (API) has been developed to conduct remote research directly via our Python library or using interactive compute such as Jupyter Notebooks. In addition to electrophysiological operations, our API also controls pumps, digital cameras and UV lights for molecule uncaging. This allows for the execution of complex 24/7 experiments, including closed-loop strategies and processing using the latest deep learning or reinforcement learning libraries. Furthermore, the infrastructure supports entirely remote use. Currently in 2024, the system is freely available for research purposes, and numerous research groups have begun using it for their experiments. This article outlines the system’s architecture and provides specific examples of experiments and results.

The recent rise in wetware computing and consequently, artificial biological neural networks (BNNs), comes at a time when Artificial Neural Networks (ANNs) are more sophisticated than ever.

The latest generation of Large Language Models (LLMs), such as Meta’s Llama 2 or OpenAI’s GPT-4, fundamentally rely on ANNs.

Nov 8, 2024

3D map reveals our solar system’s local bubble has an ‘escape tunnel’

Posted by in category: cosmology

Hot spots and tunnels to neighboring “superbubbles” seem to have been created by supernovas and infant star outbursts.

Nov 8, 2024

Memories Are Not Only in the Brain

Posted by in category: neuroscience

Study shows kidney and nerve tissue cells learn and make memories in ways similar to neurons.

Nov 8, 2024

A portable light system that can digitize everyday objects

Posted by in categories: health, robotics/AI

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the University of California at Berkeley, and Aarhus University have taken an intriguing step forward by fabricating “PortaChrome,” a portable light system and design tool that can change the color and textures…


The portable light system and design tool “PortaChrome” uses UV and RGB LEDs to activate photochromic dye, reprogramming everyday objects like shirts. The MIT CSAIL researchers’ software can help users turn items into multicolor displays of fashion designs and health data.

Nov 8, 2024

Don’t Stifle AI With Regulation

Posted by in categories: biotech/medical, economics, education, government, robotics/AI

Since the public release of OpenAI’s ChatGPT, artificial intelligence (AI) has quickly become a driving force in innovation and everyday life, sparking both excitement and concern. AI promises breakthroughs in fields like medicine, education, and energy, with the potential to solve some of society’s toughest challenges. But at the same time, fears around job displacement, privacy, and the spread of misinformation have led many to call for tighter government control.

Many are now seeking swift government intervention to regulate AI’s development in the waning “lame duck” session before the inauguration of the next Congress. These efforts have been led by tech giants, including OpenAI, Amazon, Google, and Microsoft, under the guise of securing “responsible development of advanced AI systems” from risks like misinformation and bias. Building on the Biden administration’s executive order to create the U.S. Artificial Intelligence Safety Institute (AISI) and mandate that AI “safety tests,” among other things, be reported to the government, the bipartisan negotiations would permanently authorize the AISI to act as the nation’s primary AI regulatory agency.

The problem is, the measures pushed by these lobbying campaigns favor large, entrenched corporations, sidelining smaller competitors and stifling innovation. If Congress moves forward with establishing a federal AI safety agency, even with the best of intentions, it risks cementing Big Tech’s dominance at the expense of startups. Rather than fostering competition, such regulation would likely serve the interests of the industry’s largest corporations, stifling entrepreneurship and limiting AI’s potential to transform America—and the world—for the better. The unintended consequences are serious: slower product improvement, fewer technological breakthroughs, and severe costs to the economy and consumers.

Nov 8, 2024

Scientists Reveal How Much Sleep You Need For ‘Successful Aging’

Posted by in categories: biotech/medical, life extension, neuroscience

We all want to ‘age successfully’ with as few health issues as possible. A new study suggests getting more than seven hours of sleep a night could go a long way to achieving that goal.

The study involved 3,306 participants aged 45 and over, whose sleep habits were recorded in 2011, 2013, and 2015, followed by a health check five years later. The data, analyzed by a team from Wenzhou Medical University in China, showed that those who bank at least seven hours of sleep a night tend to have significantly better health later in life.

“Successful aging was evaluated in 2020 and was defined as being free of major chronic diseases, no physical impairment, high cognitive function, good mental health, and active engagement with life,” write the researchers in their published paper.

Nov 8, 2024

Germany turns on the most powerful generator in history: It’s not a nuclear power plant

Posted by in category: nuclear energy

By 2027, Germany will be drawing clean energy from a renewable source in Lingen that provides 300 MW electricity capacity generated from green hydrogen.

Nov 8, 2024

Newfound dead star spins record-breaking 716 times a second, explodes with thermonuclear blasts

Posted by in categories: military, space

We are dealing with very extreme events.

Nov 8, 2024

Zealandia: Earth’s lost eighth continent has been found

Posted by in category: evolution

Uncover Zealandia, Earth’s hidden eighth continent. Discover its geological evolution from Gondwana to its present submerged state.

Nov 8, 2024

MIT Scientists Develop New Way To Treat the Brain — Without Invasive Implants or Genetic Tweaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

Novel magnetic nanodiscs could provide a much less invasive way of stimulating parts of the brain, paving the way for stimulation therapies without implants or genetic modification, MIT researchers report.

The scientists envision that the tiny discs, which are about 250 nanometers across (about 1/500 the width of a human hair), would be injected directly into the desired location in the brain. From there, they could be activated at any time simply by applying a magnetic field outside the body. The new particles could quickly find applications in biomedical research, and eventually, after sufficient testing, might be applied to clinical uses.

The development of these nanoparticles is described in the journal Nature Nanotechnology, in a paper by Polina Anikeeva, a professor in MIT’s departments of Materials Science and Engineering and Brain and Cognitive Sciences, graduate student Ye Ji Kim, and 17 others at MIT and in Germany.

Page 2 of 11,95312345678Last