Toggle light / dark theme

New research has revealed the fundamental mechanisms that limit the performance of copper catalysts—critical components in artificial photosynthesis that transform carbon dioxide and water into valuable fuels and chemicals.

In a study co-led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) and SLAC National Accelerator Laboratory, researchers have used sophisticated X-ray techniques to directly observe how change during the .

By applying small-angle X-ray scattering (SAXS)—a technique traditionally used to study soft materials like polymers—to this catalyst system, the team gained unprecedented insights into catalyst degradation that has puzzled scientists for decades.

Durham University has contributed to new international research that critically assesses the intricate relationship between urban digitization and sustainability, focusing on the significant environmental impact of data centers.

KAUST is part of an international collaboration that has demonstrated how an ionic salt molecule, known as CPMAC, can significantly boost solar cell performance by 0.6%. A new study published in Science reveals that integrating a synthetic molecule significantly improves the energy efficiency and

New research led by Imperial College London and co-authored by the University of Bristol, has revealed that aerial robotics could provide wide-ranging benefits to the safety, sustainability and scale of construction.

The research examines the emerging field of using drones for mid-air material deposition in the —a process known as Aerial Additive Manufacturing (Aerial AM).

This technology addresses pressing global housing and infrastructure challenges using equipped with advanced manipulators that can overcome the limitations of traditional construction methods and ground-based robotic systems.

Over the past few decades, solar cells have become increasingly widespread, with a growing number of individuals and businesses worldwide now relying on solar energy to power their homes or operations. Energy engineers worldwide have thus been trying to identify materials that are promising for the development of photovoltaics, are eco-friendly and non-toxic, and can also be easily sourced and processed.

These include kesterite-based materials, such as Cu₂ZnSnS₄ (CZTS), a class of semiconducting materials with a that resembles that of the naturally occurring mineral kesterite. Kesterite could have various advantages over the conventional silicon-based photovoltaics that are most used today, including lower manufacturing costs, a less toxic composition and greater flexibility.

Despite their potential, kesterite solar cells developed to date attain significantly lower power conversion efficiencies (PCEs) than their silicon counterparts. This is in great part due to atomic-scale defects in kesterite-based materials that trap charge carriers and prompt non-radiative recombination, a process that causes energy losses and thus reduces the solar cells’ performance.

Strawberry fields forever will exist for the in-demand fruit, but the laborers who do the backbreaking work of harvesting them might continue to dwindle. While raised, high-bed cultivation somewhat eases the manual labor, the need for robots to help harvest strawberries, tomatoes, and other such produce is apparent.

As a first step, Osaka Metropolitan University Assistant Professor Takuya Fujinaga has developed an algorithm for robots to autonomously drive in two modes: moving to a pre-designated destination and moving alongside raised cultivation beds. The Graduate School of Engineering researcher experimented with an agricultural robot that utilizes lidar point cloud data to map the environment.


Official website for Osaka Metropolitan University. Established in 2022 through the merger of Osaka City University and Osaka Prefecture University.

Found in everything from kitchen appliances to sustainable energy infrastructure, stainless steels are used extensively due to their excellent corrosion (rusting) resistance. They’re an important material in many industries, including manufacturing, transportation, oil and gas, nuclear power and chemical processing.

However, stainless steels can undergo a process called sensitization when subjected to a certain range of high temperatures—like during welding—and this substantially deteriorates their resistance. Left unchecked, corrosion can lead to cracking and structural failure.

“This is a major problem for stainless steels,” says Kumar Sridharan, a professor of nuclear engineering and engineering physics and materials science and engineering at the University of Wisconsin–Madison. “When gets corroded, components need to be replaced or remediated. This is an expensive process and causes extended downtime in industry.”

In 2023, EPFL researchers succeeded in sending and storing data using charge-free magnetic waves called spin waves, rather than traditional electron flows. The team from the Lab of Nanoscale Magnetic Materials and Magnonics, led by Dirk Grundler, in the School of Engineering, used radiofrequency signals to excite spin waves enough to reverse the magnetization state of tiny nanomagnets.

When switched from 0 to 1, for example, this allows the nanomagnets to store digital information, a process used in computer memory, and more broadly, in information and communication technologies.

This work was a big step toward sustainable computing, because encoding data via (whose quasiparticles are called magnons) could eliminate the energy loss, or Joule heating, associated with electron-based devices. But at the time, the spin wave signals could not be used to reset the to overwrite existing data.