Menu

Blog

Archive for the ‘sustainability’ category: Page 6

Aug 7, 2020

Algorithm predicts the compositions of new materials

Posted by in categories: information science, robotics/AI, solar power, sustainability

A machine-learning algorithm that can predict the compositions of trend-defying new materials has been developed by RIKEN chemists1. It will be useful for finding materials for applications where there is a trade-off between two or more desirable properties.

Artificial intelligence has great potential to help scientists find new materials with desirable properties. A that has been trained with the compositions and properties of known materials can predict the properties of unknown materials, saving much time in the lab.

But discovering new materials for applications can be tricky because there is often a trade-off between two or more material properties. One example is organic materials for , where it is desired to maximize both the voltage and current, notes Kei Terayama, who was at the RIKEN Center for Advanced Intelligence Project and is now at Yokohama City University. “There’s a trade-off between voltage and current: a material that exhibits a high voltage will have a low current, whereas one with a high current will have a low voltage.”

Aug 7, 2020

New science behind biodegradable algae-based flip-flops

Posted by in categories: biological, chemistry, science, sustainability

As the world’s most popular shoe, flip-flops account for a troubling percentage of plastic waste that ends up in landfills, on seashores and in our oceans. Scientists at the University of California San Diego have spent years working to resolve this problem, and now they have taken a step farther toward accomplishing this mission.

Sticking with their chemistry, the team of researchers formulated , made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. The results of their study are published in Bioresource Technology Reports and describe the team’s successful development of these sustainable, consumer-ready and .

The research was a collaboration between UC San Diego and startup company Algenesis Materials—a and technology company. The project was co-led by graduate student Natasha Gunawan from the labs of professors Michael Burkart (Division of Physical Sciences) and Stephen Mayfield (Division of Biological Sciences), and by Marissa Tessman from Algenesis. It is the latest in a series of recent research publications that collectively, according to Burkart, offer a complete solution to the plastics problem—at least for polyurethanes.

Aug 7, 2020

Converting CO2 to algae for bioplastic production

Posted by in categories: 3D printing, sustainability

Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely replace synthetic plastics over time.

Klarenbeek and Dros cultivate algae – aquatic plants – which they then dry and process into a material that can be used to 3D print objects.

The designers believe that the algae polymer could be used to make everything from shampoo bottles to tableware or rubbish bins, eventually entirely replacing plastics made from fossil fuels like oil.

Aug 6, 2020

Chemists create the brightest-ever fluorescent materials

Posted by in categories: solar power, sustainability

By formulating positively charged fluorescent dyes into a new class of materials called small-molecule ionic isolation lattices (SMILES), a compound’s brilliant glow can be seamlessly transferred to a solid, crystalline state, researchers report August 6 in the journal Chem. The advance overcomes a long-standing barrier to developing fluorescent solids, resulting in the brightest known materials in existence.

“These materials have potential applications in any technology that needs bright fluorescence or calls for designing optical properties, including harvesting, bioimaging, and lasers,” says Amar Flood, a chemist at Indiana University and co-senior author on the study along with Bo Laursen of the University of Copenhagen.

“Beyond these, there are interesting applications that include upconverting light to capture more of the solar spectrum in solar cells, light-switchable materials used for information storage and photochromic glass, and circularly polarized luminescence that may be used in 3D display technology,” Flood says.

Aug 6, 2020

This Tesla Model 3, Like All Teslas, Can Become A Boat For A Bit

Posted by in categories: Elon Musk, sustainability, transportation

Tesla’s Elon Musk has said on multiple occasions that Tesla’s vehicles can function as boats for a time. He doesn’t advise it, but it has been proven true.

Aug 5, 2020

Tesla challengers Xpeng and Li Auto step up US IPO plans

Posted by in categories: sustainability, transportation

However, significant roadblocks lie ahead for these start-ups, including embryonic charging infrastructure and the relatively high cost of making an electric car versus one with an internal combustion engine.


Investors are supercharging China’s largest electric vehicle start-ups to expand in the world’s largest car market.

Continue reading “Tesla challengers Xpeng and Li Auto step up US IPO plans” »

Aug 5, 2020

Vertical farming of wheat: up to 600 times greater yield

Posted by in categories: food, sustainability

A new study finds that wheat grown using a 10-layer, indoor vertical farm could have a yield between 220 and 600 times greater than current farming methods.

Aug 5, 2020

Liquid Air Energy Storage: A Power Grid Battery Using Regular Old Ambient Air

Posted by in categories: energy, sustainability

When you think of renewable energy, what comes to mind? We’d venture to guess that wind and solar are probably near the top of the list. And yes, wind and solar are great as long as the winds are favorable and the sun is shining. But what about all those short and bleak winter days? Rainy days? Night time?

Unfavorable conditions mean that storage is an important part of any viable solution that uses renewable energy. Either the energy itself has to be stored, or else the means to produce the energy on demand must be stored.

One possible answer has been right under our noses all along — air. Regular old ambient air can be cooled and compressed into a liquid, stored in tanks, and then reheated to its gaseous state to do work.

Continue reading “Liquid Air Energy Storage: A Power Grid Battery Using Regular Old Ambient Air” »

Aug 5, 2020

Unusual nanoparticles could benefit the quest to build a quantum computer

Posted by in categories: biological, chemistry, climatology, computing, engineering, nanotechnology, quantum physics, sustainability

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

A Rutgers-led team has created ultra-small dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.

Aug 5, 2020

Space technology is improving our lives and making the world a better place. Here’s how

Posted by in categories: climatology, habitats, internet, satellites, sustainability

“We need to go to space to help us here on Earth. Satellites have played an enormous role in improving the state of the world, and will do even more”.


I’m often asked: ‘Why are you building satellites for space when there are so many problems to fix here on Earth?’ It’s a perfectly rational question. The short answer is that we need to go to space to help us here on Earth. Satellites have played an enormous role in improving the state of the world, and will do even more as an explosion of technology innovation enables large new fleets of small satellites to be deployed with radical new capabilities.

Continue reading “Space technology is improving our lives and making the world a better place. Here’s how” »

Page 6 of 216First345678910Last