Toggle light / dark theme

The air we breathe can have profound effects on our physical and mental health. Is there any way of protecting yourself from this pervasive problem?

All but 1% of the world’s population is exposed to unhealthy air that exceeds World Health Organization (WHO) limits for pollutants. In parts of the world, air quality has rapidly improved through policies that aim to limit pollution. But elsewhere, gains in air quality are at risk of being lost.

More than 25% of the US population is exposed to air considered “unhealthy” by the Environmental Protection Agency (EPA), according to a report by the climate non-profit First Street Foundation. By 2050, the number of people exposed to “unhealthy” days is set to increase by more than half. The worst days of air pollution (“hazardous” or maroon, under the EPA’s system) are expected to rise by 27%.

In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.

“Recycling has long been a challenge in the materials industry—metals recycling is often inefficient and energy-intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” said corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry.

“As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future so as to proactively avoid waste management problems that emerged as other engineered materials reached large-scale use. We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

A research team developed electrokinetic mining (EKM), an eco-friendly method for extracting rare earth elements. EKM reduces environmental harm, lowers resource use, and achieved over 95% recovery in industrial tests, marking a breakthrough in sustainable mining.

On-adsorption rare earth deposits (IADs) are the primary source of heavy rare earth elements (HREE), meeting over 90% of global demand. However, the widely used ammonium-salt-based in-situ mining method has caused significant environmental damage.

To promote sustainable rare earth element (REE) extraction, Professors Jianxi Zhu and Hongping He from the Guangzhou Institute of Geochemistry at the Chinese Academy of Sciences (CAS) have developed an environmentally friendly and efficient electrokinetic mining (EKM) technology.

The past year, 2024, witnessed an array of groundbreaking technological advancements that fundamentally reshaped industries and influenced the global economy. Technology trends like the development of Industry LLMs, Sustainable Computing, and the Augmented Workforce drove innovation, fostered efficiency, and accelerated the pace of Digital Transformation across sectors such as Healthcare, Finance, and Manufacturing. These developments set the stage for even more disruptive Technology Trends in 2025.

This year is set to bring transformative changes to the business landscape, driven by emerging trends that require enterprises to adopt the right technologies, reskill their workforce, and prioritize sustainability. By embracing these Technology Trends, businesses can shape their objectives, remain competitive, and build resilience. However, Success in this rapidly evolving landscape depends not just on adopting these technologies but also on strategically leveraging them to drive innovation and growth.

Researchers created a groundbreaking solar panel system that could increase the total amount of clean energy solar panels can generate.

Solar energy is a promising energy source that is significantly cleaner than traditional dirty fuels. However, current solar panels often require high-temperature manufacturing processes that generate significant amounts of carbon. On top of that, traditional solar panels absorb only small portions of infrared and ultraviolet light, meaning chunks of sunlight don’t get converted into usable energy.

Researchers created a new solar panel system to address these challenges. In a recent study published in Nature, a team of scientists combined perovskite and organic solar cells, two emerging solar technologies, to create what they call a “tandem solar cell” that can absorb a wide spectrum of sunlight.

Join Territory to get access to perks:
https://www.youtube.com/channel/UC8SGU9hQEaJpsLuggAhS90Q/join.

The vast distances between stars make interstellar travel one of humanity’s most daunting challenges. Even the Voyager spacecrafts, now in interstellar space, would take tens of thousands of years to reach the nearest star, Alpha Centauri. To put this into perspective, Alpha Centauri is 277,000 astronomical units (AU) away—over 7,000 times the distance from Earth to Pluto. At current spacecraft speeds, a journey to our stellar neighbor would take an unimaginable 70,000 years. However, new ideas like the Sunbeam Mission offer a promising path forward, proposing innovative propulsion techniques that could shorten this timeline to mere decades.

The Sunbeam Mission centers around relativistic electron beam propulsion, where high-energy electron beams, accelerated close to the speed of light, push a spacecraft forward. This approach eliminates the need for onboard fuel, reducing the spacecraft’s mass and enabling greater acceleration. A stationary satellite, or statite, positioned near the Sun, would generate these electron beams by converting solar energy into electricity. Using materials and technologies like those developed for NASA’s Parker Solar Probe and European Space Agency’s Solar Orbiter, the statite could endure the Sun’s intense heat while directing the beam over vast distances. This could propel a spacecraft to 10% of the speed of light, allowing it to reach Alpha Centauri in about 40 years.

While the concept is ambitious, its challenges—like generating and maintaining the beam, energy conversion, spacecraft navigation, material durability, and beam focus—are not insurmountable. Current technologies, such as the Large Hadron Collider, high-temperature solar converters, and advanced heat-resistant materials, provide a foundation for overcoming these hurdles. Innovations in adaptive optics and laser communication systems also offer insights into managing beam precision over interstellar distances, demonstrating how existing advancements could be adapted for this revolutionary mission.

Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust AI testing to ensure ethical and sustainable progress.

A perspective published on November 13 in Intelligent Computing, a Science Partner Journal, argues that modern artificial intelligence.

Artificial Intelligence (AI) is a branch of computer science focused on creating systems that can perform tasks typically requiring human intelligence. These tasks include understanding natural language, recognizing patterns, solving problems, and learning from experience. AI technologies use algorithms and massive amounts of data to train models that can make decisions, automate processes, and improve over time through machine learning. The applications of AI are diverse, impacting fields such as healthcare, finance, automotive, and entertainment, fundamentally changing the way we interact with technology.

The development of sustainable energy sources that can satisfy the world energy demand is one of the most challenging scientific problems. Nuclear fusion, the energy source of stars, is a clean and virtually unlimited energy source that appears as a promising candidate.

The most promising fusion reactor design is based on the tokamak concept, which uses magnetic fields to confine the plasma. Achieving high confinement is key to the development of power plants and is the final aim of ITER, the largest tokamak in the world currently under construction in Cadarache (France).

The plasma edge stability in a tokamak plays a fundamental role in plasma confinement. In present-day tokamaks, edge instabilities, magnetohydrodynamic waves known as ELMs (edge localized modes), lead to significant particle and energy losses, like solar flares on the edge of the sun. The particle and energy losses due to ELMs can cause erosion and excessive heat fluxes onto the plasma-facing components, at levels unacceptable in future burning plasma devices.