Toggle light / dark theme

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

Commercially viable biomanufacturing: Designer yeast turns sugar into lucrative chemical 3-HP

Using a tiny, acid-tolerant yeast, scientists have demonstrated a cost-effective way to make disposable diapers, microplastics, and acrylic paint more sustainable through biomanufacturing.

A key ingredient in those everyday products is acrylic acid, an important industrial chemical that gives disposable diapers their absorbency, makes water-based paints and sealants more weather-proof, improves stain resistance in fabric, and enhances fertilizers and soil treatments.

Acrylic acid is converted from a precursor called 3-hydroxypropanoic acid, or 3-HP, which is made almost exclusively from petroleum through chemical synthesis—an energy-intensive process. But 3-HP can also be produced from renewable plant material by using engineered microbes to ferment plant sugars into this high-value chemical. Until now, however, the biomanufacturing process has not proven profitable.

Advances in thin-film electrolytes push solid oxide fuel cells forward

Under the threat of climate change and geopolitical tensions related to fossil fuels, the world faces an urgent need to find sustainable and renewable energy solutions. While wind, solar, and hydroelectric power are key renewable energy sources, their output strongly depends on environmental conditions, meaning they are unable to provide a stable electricity supply for modern grids.

Solid oxide fuel cells (SOFCs), on the other hand, represent a promising alternative; these devices produce electricity on demand directly from clean electrochemical reactions involving hydrogen and oxygen.

However, existing SOFC designs still face technical limitations that hinder their widespread adoption for power generation. SOFCs typically rely on bulk ceramic electrolytes and require high operating temperatures, ranging from 600–1,000 °C. This excessive heat not only forces manufacturers to use expensive, high-performance materials, but also leads to earlier component degradation, limiting the cell’s service life and driving up costs.

Perovskite solar cells maintain 95% of power conversion efficiency after 1,100 hours at 85°C with new molecular coating

Scientists have found a way to make perovskite solar cells not only highly efficient but also remarkably stable, addressing one of the main challenges holding the technology back from widespread use.

Perovskite has long been hailed as a game-changer for the next generation of solar power. However, advances in material design are still needed to boost the efficiency and durability of solar panels that convert sunlight into electricity.

New 3D-printed solar cells for windows offer semi-transparency

These flexible cells achieve 9.2 percent energy efficiency while maintaining 35 percent transparency.


Researchers at the Hebrew University of Jerusalem have created semi-transparent, color-tunable solar cells.

Interestingly, these can be 3D-printed onto windows, building façades, and flexible surfaces.

These panels shed the bulky, industrial look of solar arrays, giving designers the choice between a slightly transparent window or a vibrant, color-tinted architectural feature.

SpaceX IPO: Tesla Shareholder Warrants, SPARC, and Elon’s Liquidity Event

SpaceX’s potential Initial Public Offering (IPO) could not only reward long-term Tesla shareholders but also has significant implications for Elon Musk’s companies, with a possible valuation of $1.2–1.5 trillion, driven by ventures like Starlink and Starship # ## Questions to inspire discussion.

IPO Timing and Valuation Strategy.

🚀 Q: When could SpaceX realistically go public and at what valuation? A: SpaceX IPO timing targets mid-2026 with potential valuation of $1.2–1.5 trillion, dependent on Starship production readiness, successful orbital launches with Starlink payloads by mid-2024, and prevailing volatile public market conditions at listing time.

💰 Q: How much capital would SpaceX raise in the IPO? A: SpaceX would likely issue new shares to raise approximately $80 billion at the $1.2–1.5 trillion valuation target, rather than conducting a buyback of existing shares, with potential share prices ranging $50–150 per share.

📈 Q: What drives SpaceX’s trillion-dollar valuation thesis? A: Valuation hinges on Starlink satellite network (10M subscribers, 10K satellites), rapid and complete reusability of Starship launch vehicles, planned Moon and Mars bases by 2030–2040, and the Musk premium factor where investors pay extra for his involvement.

Starship as IPO Catalyst.

Why SpaceX Is Worth Trillions With Only $15B of Revenue

SpaceX’s valuation has the potential to reach $1.5 trillion due to its innovative technologies, including reusable rockets, Starship, and Starlink, which could revolutionize the space industry and unlock massive growth opportunities in areas such as satellite connectivity, data centers, and computing ## Questions to inspire discussion.

Starship Production & Economics.

🚀 Q: What is SpaceX’s Starship production target and cost reduction goal? A: SpaceX plans to manufacture 1,000 Starships per year by 2030 (with aspirational goals of 10,000 per year), reducing launch costs to $10/kg through fully reusable vehicles achieving 99% reliability and 30 flights per booster.

🎯 Q: When will Starship begin commercial payload launches? A: Starship is currently in testing phase with proven relighting, PEZ dispenser deployment, and large payload capacity, expected to achieve commercial readiness as reliability approaches 99% through iterative flight testing.

Starlink V3 Revenue Model.

💰 Q: What revenue will Starlink V3 generate for SpaceX? A: Starlink V3 constellation will generate $250B revenue with 50% profit margins, representing 90–95% of SpaceX’s revenue over the next 5 years according to Mach33 and ARK Invest modeling.

North Pacific winter storm tracks shifting poleward much faster than predicted

Alaska’s glaciers are melting at an accelerating pace, losing roughly 60 billion tons of ice each year. About 4,000 kilometers to the south, in California and Nevada, records for heat and dryness are being shattered, creating favorable conditions for wildfire events.

One major factor contributing to climate change in both regions is the northward shift of winter storm tracks across the North Pacific Ocean. These storms transport heat and moisture from Earth’s warmer regions toward the pole; when their tracks shift northward, more heat and moisture reach Alaska, while natural ventilation of the southwestern United States is reduced, driving temperatures upward.

In a new study published in Nature, Dr. Rei Chemke of the Weizmann Institute of Science’s Earth and Planetary Sciences Department and Dr. Janni Yuval of Google Research show that the storms’ northward shift is occurring much faster than climate models have predicted. Moreover, using a new metric based on sea-level pressure—a parameter measured consistently for decades—the researchers found that this shift is not part of natural climate variability but rather a clear consequence of climate change.

Inside the world’s first fully automated mixed waste processing facility

When fully automated waste and recycling facilities were just a concept in the industry, Norwegian municipal solid waste (MSW) hauling company Romerike Avfallsforedling (RoAF) turned the concept into a reality.

Powered by a sorting system installed by Germany-based Stadler Anlagenbau GmbH, RoAF opened the world’s first fully automated mixed waste processing facility in 2016 in the village of Skedsmokorset, just outside of Oslo, to help meet the needs of Norwegian municipalities that were facing high labor costs. While the concept was three years in the making, Stadler needed just three months to complete construction of the facility.

RoAF collects household and food waste from 10 municipalities in Norway, including Skedsmo, which boasts a population of roughly 53,000 people. When waste arrives at the automated plant, it’s first fed onto a conveyor, which delivers the waste into the sorting plant.

/* */