JERA and other utilities need to do more to reduce their carbon footprint.
Tim Daiss
Obstacles include local regulations, fisheries and China’s military posturing.
Tim Daiss
$15,000 SUV aims to compete with BYD and other rivals among price-conscious buyers.
Toyota launched its cheapest EV, the bZ3X subcompact SUV, in China on March 6. (Toyota Motor)
Using a sediment core taken from the Great Blue Hole off the coast of the Central American state of Belize, researchers from the universities of Frankfurt, Cologne, Göttingen, Hamburg and Bern have analyzed the local climate history of the last 5,700 years.
Investigations of the sediment layers from the 30-meter-long core revealed that storms have increased over the long term and that tropical cyclones have become much more frequent in recent decades. The results were published under the title “An annually resolved 5700-year storm archive reveals drivers of Caribbean cyclone frequency” in the journal Science Advances.
The Great Blue Hole is up to 125 meters deep and approximately 300 meters wide, situated in the very shallow Lighthouse Reef, an atoll off the coast of Belize. The hole was formed from a stalactite cave that collapsed at the end of the last ice age and then became flooded by the rising sea level as a result of the melting of the continental ice masses.
We often never hear of many inventions, which is why Lifeboat is good at informing people.
Gregorio Zara (March 8, 1902–October 15, 1978) was a Filipino scientist best known as the inventor of the videophone, the first two-way electronic video communicator, in 1955. All told, he patented 30 devices. His other inventions ranged from an alcohol-powered airplane engine to a solar-powered water heater and stove.
Filipino scientist Gregorio Zara won 30 patents for his inventions, which included the first videophone and many breakthroughs in aeronautics.
Posted in engineering, nanotechnology, particle physics, solar power, sustainability | Leave a Comment on Scientists unlock new dimension in light manipulation, ushering in a new era in photonic technology
Researchers at Heriot-Watt University have made a discovery that could pave the way for a transformative era in photonic technology. For decades, scientists have theorized the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland.
Published in Nature Photonics, the team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs)—a special glass capable of changing how light moves through the material at incredible speeds. These compounds are widely found in solar panels and touchscreens and can be shaped as ultra-thin films measuring just 250 nanometers (0.00025 mm), smaller than the wavelength of visible light.
Led by Dr. Marcello Ferrera, Associate Professor of Nanophotonics, of the Heriot-Watt research team, supported by colleagues from Purdue University in the US, managed to “sculpt” the way TCOs react by radiating the material with ultra-fast pulses of light. Remarkably, the resulting temporally engineered layer was able to simultaneously control the direction and energy of individual particles of light, known as photons, a functionality which, up until now, had been unachievable.
About 100 million metric tons of high-density polyethylene (HDPE), one of the world’s most commonly used plastics, are produced annually, using more than 15 times the energy needed to power New York City for a year and adding enormous amounts of plastic waste to landfills and oceans.
Cornell chemistry researchers have found ways to reduce the environmental impact of this ubiquitous polymer —found in milk jugs, shampoo bottles, playground equipment and many other things—by developing a machine-learning model that enables manufacturers to customize and improve HDPE materials, decreasing the amount of material needed for various applications. It can also be used to boost the quality of recycled HDPE to rival new, making recycling a more practical process.
“Implementation of this approach will facilitate the design of next-generation commodity materials and enable more efficient polymer recycling, lowering the overall impact of HDPE on the environment,” said Robert DiStasio Jr., associate professor of chemistry and chemical biology in the College of Arts and Sciences (A&S).
Recent advances in astronomical observations have found a significant number of extrasolar planets that can sustain surface water, and the search for extraterrestrial life on such planets is gaining momentum. A team of astrobiologists has proposed a novel approach for detecting life on ocean planets. By conducting laboratory measurements and satellite remote sensing analyses, they have demonstrated that the reflectance spectrum of floating vegetation could serve as a promising biosignature. Seasonal variations in floating vegetation may provide a particularly effective means for remote detection.
Astronomical surveys have discovered nearly 6,000 exoplanets, including many habitable planets, which may harbor liquid water on their surfaces. The search for life on such planets is one of the most significant scientific endeavors of this century, with direct imaging observation projects currently under development.
On Earth-like planets, the characteristic reflectance spectrum of terrestrial vegetation, known as “vegetation red edge,” is considered as a key biosignature.
NTU Singapore’s solar-powered process converts sewage sludge into clean energy and animal feed, reducing waste and carbon emissions while improving resource recovery.
Scientists at Nanyang Technological University, Singapore (NTU Singapore), have developed a groundbreaking solar-powered process to convert sewage sludge—a by-product of wastewater treatment—into green hydrogen for clean energy and single-cell protein for animal feed.
Published in Nature Water, this innovative sludge-to-food-and-fuel method addresses two critical global challenges: waste management and sustainable resource generation. It also aligns with NTU’s commitment to tackling major issues like climate change and environmental sustainability.