Archive for the ‘sustainability’ category: Page 2

May 14, 2024

Chicken fat sparks breakthrough in sustainable energy storage

Posted by in categories: energy, sustainability

Researchers have developed a method to turn chicken fat into carbon electrodes for supercapacitors in energy storage.

May 13, 2024

Analysis Reveals Marine Protected Areas Falling Short on Biodiversity Goals

Posted by in categories: biological, sustainability

How does human activity influence the ocean biodiversity for marine protected areas (MPAs)? This is what a recent study published in Conservation Letters hopes to address as a team of international researchers investigated current conservation efforts aimed at further strengthening MPAs around the world. This study holds the potential to help scientists, conservationists, legislators, and the public better understand the global impact of ocean biodiversity, as the United Nations has called for protecting 30 percent of the ocean by 2030.

“Now more than ever we need healthy and biodiverse areas in the ocean to benefit people and help buffer threats to ocean ecosystems,” said Dr. Kirsten Grorud-Colvert, who is an associate professor in the Department of Integrative Biology at Oregon State University and a co-author on the study. “Marine protected areas can only achieve this if they are set up to be effective, just and durable. Our assessment shows how some of the largest protected areas in the world can be strengthened for lasting benefits.”

For the study, the researchers analyzed the 100 largest MPAs in the world using The MPA Guide, the former of which represents 90 percent of the global MPAs. For each MPA, the researchers collected data on the protection status, regulation documents, and management plan, along with analyzing scientific literature pertaining to human activities in those MPAs. In the end, the researchers found that 25 percent of the analyzed MPAs lacked proper implementation while they determined that 33 percent of the analyzed MPAs did not meet criteria for being compatible with nature conservation. They concluded these results were from either decreased regulations or increased levels of human activity.

May 13, 2024

Biohybrid robot made from flour and oats could act as a biodegradable vector for reforestation

Posted by in categories: robotics/AI, sustainability

Researchers at Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in collaboration with the University of Freiburg have developed a biohybrid robot, which consists of a flour-based capsule created using 3D microfabrication techniques, and two natural appendages from oat fruit capable of moving in response to air humidity.

May 13, 2024

Toyota aims to start producing EV batteries in North Carolina next year

Posted by in categories: sustainability, transportation

Toyota is aiming to start producing electric vehicle (EV) batteries next year at its upcoming factory in North Carolina, set to eventually build battery packs for the company’s hybrids, plugin hybrids and EVs.

After increasing its investment into the plant to $13.9 billion total last year, Toyota has continued to make progress on construction at the site since it broke ground in the latter part of 2022.

Toyota chairman predicts EVs will only reach 30 percent market share

May 13, 2024

Research team discovers new property of light

Posted by in categories: computing, solar power, sustainability

A research team headed by chemists at the University of California, Irvine has discovered a previously unknown way in which light interacts with matter, a finding that could lead to improved solar power systems, light-emitting diodes, semiconductor lasers and other technological advancements.

May 13, 2024

Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons

Posted by in categories: computing, nanotechnology, neuroscience, sustainability

Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.

Cytoskeleton-based trafficking mechanics have long been explored because of their essential role in neuronal function and maintenance (Westrum et al., 1983; Okada et al., 1995; Sorra et al., 2006; Perlson and Holzbaur, 2007; Tao-Cheng, 2007; Hirokawa et al., 2009; Staras and Branco, 2010; Tang et al., 2013; Wu et al., 2013; Maeder et al., 2014; Guedes-Dias et al., 2019; Gramlich et al., 2021; Watson et al., 2023). Protein trafficking via cytoskeleton transport is essential for synaptogenesis (Perlson and Holzbaur, 2007; Santos et al., 2009; Klassen et al., 2010; Wu et al., 2013; Guedes-Dias et al., 2019; Guedes-Dias and Holzbaur, 2019; Kurshan and Shen, 2019; Watson et al., 2023) and to replace older proteins with newer proteins for efficient function (Cohen et al., 2013; Dörrbaum et al., 2018, 2020; Heo et al., 2018; Truckenbrodt et al., 2018; Jähne et al., 2021; Watson et al., 2023).

May 12, 2024

Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works

Posted by in categories: particle physics, sustainability

Researchers have developed a revolutionary material that can help eliminate microplastics, one of the most pervasive artificial contaminants in nature, from our waterways.

Scientists at the Indian Institute of Science have created a sustainable hydrogel — a polymer-based material that can adapt its structure to its environment even after absorbing water — with a “unique intertwined polymer network” that binds the microplastics and breaks them down using UV light, the institute summarized on its website.

Continue reading “Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works” »

May 12, 2024

Why AI playing video games is a big deal

Posted by in categories: entertainment, food, robotics/AI, sustainability

The lab’s latest AI news is something different, though. Instead of designing a model to master a single game, DeepMind has teamed up with researchers from the University of British Columbia to develop an AI agent capable of playing a whole bunch of totally different games.

Called SIMA (scalable i nstructable m ulti-world a gent), the project also marks a shift from competitive to cooperative play as the AI operates by following human instructions.

But SIMA wasn’t created simply to help sleepy players grind out levels or farm up resources. The researchers instead hope that by better understanding how SIMA learns in these virtual playgrounds, we can make AI agents more cooperative and helpful in the real world.

May 10, 2024

The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands

Posted by in categories: climatology, sustainability

“There has been extensive talk about how larger trees respond to the effects of climate change,” said Dr. Thomas Murphy. “But these results show we need to factor in the response of young trees as well, especially if they are being envisioned as an integral part of the solution.”

Can climate change be fought using saturated soils, and what impacts would these soils have on newly planted trees? This is what a recent study published in Forest Ecology and Management hopes to address as a team of researchers from the University of Plymouth investigated how various soil saturation levels could influence the survival rates of newly planted trees meant to combat climate change. This study holds the potential to help scientists, conservationists, and legislators better understand the steps that can be taken to combat climate change without causing further harm to the environment.

The study involved planting acorns in four different soils: totally flooded, high saturation, medium saturation, and low saturation, with the water levels being just over eight-and-a-half inches (220 millimeters) beneath the acorns. In the end, the researchers discovered a zero-survivability rate for the totally flooded acorns while finding increased survivability rates for high saturation, medium saturation, and low saturation at 43 percent, 77 percent, and 83 percent, respectively. For the higher saturated acorns, the researchers also found decreased levels of leaf photosynthesis, root: shoot ratio, and decreased chances of late season shoot growth, as well.

Continue reading “The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands” »

May 10, 2024

Scientists Discover First-of-Its-Kind Molecule That Absorbs Greenhouse Gasses

Posted by in categories: materials, sustainability

A ‘cage of cages’ is how scientists have described a new type of porous material, unique in its molecular structure, that could be used to trap carbon dioxide and another, more potent greenhouse gas.

Synthesized in the lab by researchers in the UK and China, the material is made in two steps, with reactions assembling triangular prism building blocks into larger, more symmetrical tetrahedral cages – producing the first molecular structure of its kind, the team claims.

The resulting material, with its abundance of polar molecules, attracts and holds greenhouse gasses such as carbon dioxide (CO2) with strong affinity. It also showed excellent stability in water, which would be critical for its use in capturing carbon in industrial settings, from wet or humid gas streams.

Page 2 of 59512345678Last