Toggle light / dark theme

Stitched for strength: The physics of jamming in stiff, knitted fabrics

School of Physics Associate Professor Elisabetta Matsumoto is unearthing the secrets of the centuries-old practice of knitting through experiments, models, and simulations. Her goal? Leveraging knitting for breakthroughs in advanced manufacturing—including more sustainable textiles, wearable electronics, and soft robotics.

Matsumoto, who is also a principal investigator at the International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2) at Hiroshima University, is the corresponding author on a new study exploring the physics of ‘’—a phenomenon when soft or stretchy materials become rigid under low stress but soften under higher tension.

The study, “Pulling Apart the Mechanisms That Lead to Jammed Knitted Fabrics,” is published in Physical Review E, and also includes Georgia Tech Matsumoto Group graduate students Sarah Gonzalez and Alexander Cachine in addition to former postdoctoral fellow Michael Dimitriyev, who is now an assistant professor at Texas A&M University.

Researchers develop flexible fiber material for self-powered health-monitoring sensors

Could clothing monitor a person’s health in real time, because the clothing itself would be a self-powered sensor? A new material created through electrospinning, which is a process that draws out fibers using electricity, brings this possibility one step closer.

A team led by researchers at Penn State has developed a new fabrication approach that optimizes the internal structure of electrospun fibers to improve their performance in electronic applications. The team has published its findings in the Journal of Applied Physics.

This novel electrospinning approach could open the door to more efficient, flexible and scalable electronics for wearable sensors, health monitoring and sustainable energy harvesting, according to Guanchun Rui, a visiting postdoctoral student in the Department of Electrical Engineering and the Materials Research Institute and co-lead author of the study.

Earth appears to be developing new never-before-seen human-made seasons, study finds

Diverse perspectives, especially those from Indigenous knowledge systems, can enhance our ability to respond to environmental changes. Integrating alternative time-keeping methods into mainstream practices could foster fairer and more effective solutions to environmental problems.

Seasons are more than just divisions of time — they connect us with nature. Finding synchrony with changing seasonal rhythms is essential for building a sustainable future.

This edited article is republished from The Conversation under a Creative Commons license. Read the original article.

Study uncovers technologically appealing trick used by microalgae to manipulate light

Skoltech researchers and their colleagues have uncovered an intricate light manipulation mechanism likely used by microscopic algae to boost photosynthesis.

By studying the interaction of light with the elaborately patterned silicon dioxide shells enclosing the , the team hopes to reveal principles that could eventually be leveraged in light detectors, bio-and chemical sensors, protective coatings against ultraviolet rays, , and other nature-inspired technology, right up to artificial photosynthesis systems using CO2 and water to make fuel.

The study was published in the journal Optica.

Lunar soil could support life on the Moon, say scientists

Scientists have developed a technology that may help humans survive on the moon. In a study published in the journal Joule, researchers extracted water from lunar soil and used it to convert carbon dioxide into oxygen and chemicals for fuel—potentially opening new doors for future deep space exploration by mitigating the need to transport essential resources like water and fuel all the way from Earth.

“We never fully imagined the ‘magic’ that the lunar soil possessed,” said Lu Wang of the Chinese University of Hong Kong, Shenzhen.

“The biggest surprise for us was the tangible success of this integrated approach. The one-step integration of lunar H2O extraction and photothermal CO2 catalysis could enhance energy utilization efficiency and decrease the cost and complexity of infrastructure development.”

Research shows how sulfate ions increase the lifespan, performance of aqueous batteries

Scientists at King Abdullah University of Science and Technology (KAUST) have uncovered a critical molecular cause keeping aqueous rechargeable batteries from becoming a safer, economical option for sustainable energy storage.

Their findings, published in Science Advances, reveal how water compromises battery life and performance and how the addition of affordable salts—such as zinc sulfate—mitigates this issue, even increasing the battery lifespan by more than ten times.

One of the key determinants of the lifespan of a battery—aqueous or otherwise—is the . Chemical reactions at the anode generate and store the battery’s energy. However, parasitic degrade the anode, compromising the battery lifespan.

Design strategies for reshaping stability and sustainability of perovskite solar cells

A research team from the School of Engineering (SENG) at the Hong Kong University of Science and Technology (HKUST) has introduced comprehensive bio-inspired multiscale design strategies to address key challenges in the commercialization of perovskite solar cells: long-term operational stability. Drawing inspiration from natural systems, these strategies aim to enhance the efficiency, resilience, and adaptability of solar technologies.

Their paper, titled “Bio-Inspired Multiscale Design for Perovskite Solar Cells,” has been published in Nature Reviews Clean Technology.

The approaches focus on leveraging insights from to create that can better withstand environmental stressors and prolonged use.

/* */