Toggle light / dark theme

🚀 LumenOrbit (YC S24) is building a network of megawatt-scale data centers in space, scalable to gigawatt capacity.

Why we should train AI in space.

To keep pace with AI development, vast new data centers and many gigawatts of new energy projects to power them will need to be deployed around the



Lumen Orbit is building data centers in space to make use of 24/7 solar energy and passive cooling.

Researchers at SLAC have made groundbreaking strides in understanding the photoelectric effect, initially described by Einstein.

They’ve developed a technique using attosecond X-ray pulses to measure electron-emission delays, revealing discrepancies in existing theories by showing larger-than-expected delays. Their method provides a new tool to study electron-electron interactions, which are fundamental to many technologies, including semiconductors and solar cells.

New Photoelectric Effect Insights

Chinese solar PV giant Trina Solar has successfully begun commercial operations at a new agri-voltaic solar project in Japan that combines solar modules with a yam crop that thrives in the shade.

The agrivoltaic project is only small – just 2.4 MW – and is located in the city of Fukuchiyama in Japan’s northern Kyoto Prefecture, but is a demonstration of the new way of thinking about the use of solar projects and existing farmland.

The Fukuchiyama project is paired with the cultivation of the Japanese yam, also known as ebi-imo, a crop native to the region which thrives in shade.

Since 2014, solar capacity at K-12 schools has more than quadrupled across the US, according to a new report from clean energy nonprofit Generation180.

The “Brighter Future: A Study of Solar on K-12 Schools” report highlights that over 6.2 million students – more than 1 in 9 – now attend schools powered by solar. In 2023 alone, more than 800 schools added solar panels, meaning that at least one school went solar every single day during the 2022–23 school year.

“The benefits of solar energy are now reaching a broad range of schools across the country, including those in under-resourced communities that stand to gain the most from the cost savings and educational opportunities that solar technology provides. We want all schools and communities, regardless of their size, geography, or wealth, to have access to affordable, clean energy,” says Tish Tablan, the report’s lead author and senior director of Generation180’s Electrify Our Schools Program.

Summary: Researchers developed a brain-inspired AI technique using neural networks to model the challenging quantum states of molecules, crucial for technologies like solar panels and photocatalyst.

This new approach significantly improves accuracy, enabling better prediction of molecular behaviors during energy transitions. By enhancing our understanding of molecular excited states, this research could revolutionize material prototyping and chemical synthesis.

Your early morning run could soon help harvest enough electricity to power your wearable devices, thanks to a new nanotechnology developed at the University of Surrey.

Surrey’s Advanced Technology Institute (ATI) has developed highly energy-efficient, flexible nanogenerators, which demonstrate a 140-fold increase in when compared to conventional nanogenerators. ATI researchers believe that this development could pave the way for nano-devices that are as efficient as today’s solar cells.

The findings are published in the journal Nano Energy.

In a paper published in Nature Chemistry, researchers from the University of Cambridge, Imperial College London and Queen Mary University of London have shown for the first time how different arrangements of molecules in organic solar cells can improve light absorption, leading the way to better and cheaper solar panels.

Organic solar cells use or organic polymers to absorb and transform sunlight into electricity. The molecules can be produced synthetically at high throughput, and the resulting cells are lightweight, flexible and inexpensive to make. This makes them potentially cheaper, sustainable and more flexible than traditional cells made of silicon.

When light hits an organic solar cell, it forces the molecules to transfer electrons, which generates an . The efficiency of the process depends on the arrangement of the molecules and how well they interact.