Toggle light / dark theme

A research team has developed a novel “pulse-shaped” light method to enhance the electrical conductivity of PbS quantum dot solar cells. This new technique, which replaces the lengthy traditional heat treatment process, generates substantial energy at regular intervals, significantly improving efficiency and addressing defects caused by light, heat, and moisture exposure. PbS quantum dots, known for their wide absorption range and low processing costs, are now more viable for commercial use. This advancement is expected to facilitate the broader application of quantum dot technology in optoelectronic devices. Credit: SciTechDaily.com.

A research team headed by Professor Jongmin Choi from the Department of Energy Science and Engineering at Daegu Gyeongbuk Institute of Science and Technology has successfully developed a “PbS quantum dot” capable of quickly improving the electrical conductivity of solar cells. This collaborative effort involved Professor Changyong Lim of the Department of Energy Chemical Engineering at Kyungpook National University, led by President Wonhwa Hong, and Professor Jongchul Lim from the Department of Energy Engineering at Chungnam National University, under the leadership of President Jeongkyoum Kim.

The team identified a method to enhance electrical conductivity through the use of “pulse-shaped” light, which generates substantial energy in a concentrated manner at regular intervals. This method could replace the heat treatment process, which requires a significant amount of time to achieve the same result. This approach is expected to facilitate the production and commercialization of PbS quantum dot solar cells in the future.

Wyoming just approved its largest solar farm – 771 megawatts (MW) of utility-scale solar plus battery storage.

Developer Enbridge has been issued a siting permit by the Industrial Siting Council to construct and operate Cowboy Solar I & II on private land leases in Laramie County, in the state’s southeast corner. Next steps will be to obtain county, environmental, and municipal permits.

Cowboy Solar I will include 400 MW of solar power and 136 MW of battery storage, while Cowboy Solar II will have 371 MW of solar power and 133 MW of battery storage.

Semiconductors are the foundation of all modern electronics. Now, researchers at Linköping University, Sweden, have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study, published on May 15 in the journal Nature, is a significant step toward future cheap and sustainable organic semiconductors.

“We believe this method could significantly influence the way we dope organic semiconductors. All components are affordable, easily accessible, and potentially environmentally friendly, which is a prerequisite for future sustainable electronics,” says Simone Fabiano, associate professor at Linköping University.

Semiconductors based on conductive plastics instead of silicon have many potential applications. Among other things, organic semiconductors can be used in digital displays, solar cells, LEDs, sensors, implants, and for energy storage.

The transcript features an interview with renowned science fiction author Isaac Asimov, discussing his predictions and visions for the future of space exploration, computers, robotics, and humanity’s role in shaping that future. It touches on concepts like permanent space settlements, harnessing solar power, the increasing importance of computers and AI, the impacts of robotics on jobs, and taking an optimistic yet cautionary view of technological progress. It also covers some earlier inaccurate and exaggerated predictions about robots replacing humans, as well as actual technological developments in 1982 like artificial hearts and fusion reactors. The overall theme is Asimov’s hopeful but measured outlook on future scientific and technological advancements.

Floating photovoltaics (FPV), also known as floating solar farms, are photovoltaic systems that can be deployed on the sea’s surface or on other bodies of water. While their environmental impact is still the topic of debate worldwide, these systems could be highly advantageous for generating renewable energy, particularly in warm regions where available land is scarce or costly.

Researchers at Linköping University in Sweden have developed a battery constructed from zinc and lignin that can be recharged over 8,000 times. This innovation aims to offer an affordable and eco-friendly battery alternative, especially for regions with limited electricity access. The findings are detailed in the journal Energy & Environmental Materials.

“Solar panels have become relatively inexpensive, and many people in low-income countries have adopted them. However, near the equator, the sun sets at around 6 PM, leaving households and businesses without electricity. The hope is that this battery technology, even with lower performance than the expensive Li-ion batteries, will eventually offer a solution for these situations,” says Reverant Crispin, professor of organic electronics at Linköping University.

NASA ’s upcoming Gateway space station, set to orbit the Moon, will rely heavily on its Power and Propulsion Element (PPE) for energy and maintaining its orbit. Currently under development with Maxar Technologies, the PPE uses solar electric propulsion to efficiently power the station. This system, designed to significantly reduce the need for propellant, will be integrated with Gateway’s habitation module and launched to support deep space exploration and future Artemis missions to Mars.

As astronauts live and work on Gateway to enable sustained exploration and research in deep space, their efforts will be made possible by Gateway’s Power and Propulsion Element (PPE). A foundational component of the lunar outpost and the most powerful solar electric spacecraft ever flown, PPE will provide Gateway with power and allow it to maintain its unique orbit around the Moon.

Gateway will be humanity’s first space station in lunar orbit and serve as an essential element of NASA’s Artemis missions. As astronauts live and work on Gateway to enable sustained exploration and research in deep space, their efforts will be made possible by the Power and Propulsion Element (PPE). A foundational component of the lunar outpost and the most powerful solar electric spacecraft ever flown, PPE will provide Gateway with power and allow it to maintain its unique orbit around the Moon.