Toggle light / dark theme

NASA ’s CubeSat Launch Initiative (CSLI) is sending four CubeSats to the International Space Station to advance space-based technologies in solar power, gamma-ray burst detection, and water monitoring. Developed in collaboration with universities and NASA, these satellites aim to enhance our understanding of cosmic phenomena and Earth’s environmental dynamics.

NASA’s CubeSat Launch Initiative is sending a group of four small satellites, called CubeSats, to the International Space Station (ISS) as ELaNa 51 (Educational Launch of Nanosatellites). These small payloads have been developed by NASA and universities and will be deployed from low Earth orbit.

Once circling Earth, the satellites will help demonstrate and mature technologies meant to improve solar power generation, detect gamma-ray bursts, determine crop water usage, and measure root-zone soil and snowpack moisture levels.

In an article published in the Journal of Materials Chemistry C, Brazilian researchers describe a strategy to enhance the efficiency and stability of solar cells made of perovskite, a semiconductor material produced in the laboratory. The results of the project could be highly positive for the future of the solar power sector.

Developed by researchers at São Paulo State University (UNESP) in Bauru, Brazil, the method involves the use of a class of materials known as MXenes, a family of two-dimensional materials with a graphene-like structure combining transition metals, carbon and/or nitrogen, and surface functional groups such as fluoride, oxygen or hydroxyl. Their properties include high electrical conductivity, good thermal stability, and high transmittance (relating to the amount of light that passes through a substance without being reflected or absorbed).

The process is ludicrously energy intensive, with experts estimating that the industry could soon suck up as much electricity as an entire country.

So it shouldn’t come as a surprise that OpenAI CEO Sam Altman is looking for cheaper alternatives. During a Bloomberg event at the annual World Economic Forum in Davos, Switzerland, the billionaire suggested that the AI models of tomorrow may require even more power — to the degree that they’ll need a whole new power source.

“There’s no way to get there without a breakthrough,” Altman told audiences, as quoted by Reuters. “It motivates us to go invest more in fusion,” adding that we need better ways to store energy from solar power.

The Australian Synchrotron, a crown jewel of Australian scientific infrastructure, is making major strides towards sustainable energy independence. The nuclear research facility recently completed the installation of 3,200 solar panels which now blankets the facility’s rooftops. This move is expected to generate substantial savings and support Synchrotron’s world-class research.

The state-of-the-art particle accelerator has now gone green with a 1.59 MW/ 1,668 kWh rooftop solar system. The facility will save about $2 million in energy costs over the next five years.

An innovative, flexible solar cell being developed in South Korea has passed a crucial stress test.

Researchers from the Korea Advanced Institute of Science & Technology (KAIST) are working on a rubber-like sun-catcher made from organic materials. The idea is for these elastic cells to one day help power the wearable technology that is becoming more prevalent in society, per a KAIST research report.

“Through this research, we not only developed the world’s best performing stretchable organic solar cell, but it is also significant that we developed a new polymer that can be applicable as a base material for various electronic devices that needs to be malleable and/or elastic,” study lead Professor Bumjoon Kim said in the summary.