Toggle light / dark theme

Hollywood star Brad Pitt recently opened SINTEF’s conference on digital security. Well, actually, no, he didn’t. “I cloned his voice in less than three minutes,” says Viggo Tellefsen Wivestad, researcher at SINTEF Digital.

Wivestad began his talk on with himself on video, but as Brad, with his characteristic sexy voice: “Deepfake. Scary stuff, right?” And that is precisely the researcher’s message.

Deepfake will become a growing threat to us as both private individuals and employees, and to society at large. The technology is still in its infancy. Artificial intelligence is opening up unimaginable opportunities and becoming harder and harder to detect.

Additionally, their ability to penetrate various materials without harmful radiation makes them valuable for security screening, quality control in industries, and chemical sensing. However, until now, it has been challenging to harness the potential of these waves in electronic devices due to several technological limitations.

Finally, a new study from researchers at MIT reveals a chip-based solution that can overcome these limitations and make terahertz waves more accessible than ever.

Terahertz (THz) waves are affected by the dielectric constant, a measure of how well a material can store and slow down an electric field. The lower this constant is the smoother terahertz waves can pass through a material.

A worldwide MASS BAN of DeepSeek AI has just begun, and the implications are shocking! Governments, corporations, and AI regulators are now cracking down on one of the fastest-growing AI models, sparking intense debates about AI safety, censorship, and control. But why is DeepSeek AI being banned, and what does this mean for the future of artificial intelligence?

In this video, we break down why countries are banning DeepSeek AI, the real reasons behind this massive restriction, and what this means for the AI industry and everyday users. Is this about security risks, misinformation, or something even bigger? And how will OpenAI, Google, and other tech giants respond to this sudden AI crackdown?

With the AI revolution accelerating faster than governments can regulate, this global ban on DeepSeek could signal the beginning of tighter AI control worldwide. But is this about protecting people—or protecting power? Watch till the end to find out!

Why is DeepSeek AI being banned? What does this mean for the future of AI? Is this the start of global AI censorship? This video will answer all these questions and more—so don’t miss it!

#ai.
#artificialintelligence.
#deepseek.

*******************

Based on outstanding technical progress by research teams to date, DARPA has pivoted the third and final phase of its NOM4D (pronounced nō- mad) program[1] from planned further laboratory testing to conducting a pair of small-scale orbital demonstrations to evaluate novel materials and assembly processes in space.

As commercial space companies continue to expand access to orbit for U.S. economic and national security needs, a major roadblock for building large-scale structures in orbit remains: the size and weight limits imposed by a rocket’s cargo fairing. In 2022, DARPA introduced NOM4D to break this cargo-constraint mold by exploring a new paradigm. Instead of folding or compacting structures to fit them into a rocket fairing to be unfurled or deployed in space, DARPA proposed stowing novel lightweight raw materials in the rocket fairing that don’t need to be hardened for launch. The intent of this approach is to allow in-orbit construction of vastly larger and more mass-efficient structures than could ever fit in a rocket fairing. Additionally, this concept enables mass-efficient designs of structures that would sag under their own weight on Earth but are optimized for the low-gravity environment of space.

“Caltech [California Institute of Technology] and the University of Illinois Urbana-Champaign have demonstrated tremendous advances in the first two phases and have now partnered in Phase 3 with space-launch companies to conduct in-space testing of their novel assembly processes and materials,” said Andrew Detor, DARPA NOM4D program manager. “Originally, Phase 3 was going to be about making things more precisely in the lab than we did in Phase 2. But we said, ‘You know, the maturity is there, and there would be more impact if we took the capabilities we have now and actually go demonstrate them in space to show that it can be done.’ Pushing the performers to do a demo in space means they can’t just sweep challenges under the rug like they could in a lab. You better figure out how it’s going to survive in the space environment.”

In December 2022, a team at Lawrence Livermore National Lab’s National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach scientific energy breakeven, producing more energy from fusion than the laser energy used to drive it. In that experiment, where 2.05 MJ of laser energy was delivered to the target, a fusion energy output of 3.15 MJ was achieved, a gain of 1.5. Since then, ignition has been repeated several times, with even higher gains achieved. This webinar will review the NIF – the world’s largest, most energetic laser; the latest experimental results; the scientific and technological advancements that made this breakthrough possible; and the implications for future research, particularly in how the achievement of ignition now lays the groundwork to explore laser inertial fusion as a path for clean energy and energy security.

The following topics will be presented:
• Fusion.
• Lawrence Livermore National Laboratory.
• National Ignition Facility.
• Ignition.
• Energy.
• Pilot plant.

Visit us at https://hdiac.dtic.mil/.

#fusion #fusionenergy #energy#nuclearenergy #ignition #cleanenergy #energysecurity #energygeneration #alternativeenergy

Data security on the internet is under threat: in the future, quantum computers could decode even encrypted files sent over the internet in no time. Researchers worldwide are, therefore, experimenting with quantum networks that will enable a paradigm shift in the future when globally connected to form the quantum internet.

Such systems would be able to guarantee tap-proof communication through quantum mechanical phenomena such as superposition and entanglement, as well as cryptographic quantum protocols. However, the is still in its infancy: high costs coupled with high energy consumption and a high level of complexity for the necessary technologies have prevented quantum networks from scaling easily.

Two researchers at the Institute of Photonics at the Leibniz University Hannover want to remedy this situation. Using frequency-bin coding, they have developed a novel method for entanglement-based quantum key distribution. This quantum mechanical encryption technique uses different light frequencies, i.e. colors, to encode the respective quantum states. The method increases security and resource efficiency.

Researchers from SANKEN (The Institute of Scientific and Industrial Research) at Osaka University have discovered that temperature-controlled conductive networks in vanadium dioxide significantly improve the sensitivity of silicon devices to terahertz.

Terahertz radiation refers to the electromagnetic waves that occupy the frequency range between microwaves and infrared light, typically from about 0.1 to 10 terahertz (THz). This region of the electromagnetic spectrum is notable for its potential applications across a wide variety of fields, including imaging, telecommunications, and spectroscopy. Terahertz waves can penetrate non-conducting materials such as clothing, paper, and wood, making them particularly useful for security screening and non-destructive testing. In spectroscopy, they can be used to study the molecular composition of substances, as many molecules exhibit unique absorption signatures in the terahertz range.

In today’s AI news, a consortium of investors led by Elon Musk is offering $97.4 billion to buy the nonprofit that controls OpenAI. The unsolicited offer adds a complication to Altman’s carefully laid plans for OpenAI’s future, including converting it to a for-profit company and spending up to $500 billion on AI infrastructure through a JV called Stargate.

In other advancements, all eyes were on French President Emmanuel Macron Sunday at the end of the first day of the AI Action Summit in Paris after he announced a €109 billion investment package. “For me, this summit is not just the announcement of a lot of investment in France. It’s a wake-up call for a European strategy,” he said.

And, Current AI, a “public interest” initiative focused on fostering and steering development of artificial intelligence in societally beneficial directions, was announced at the French AI Action summit on Monday. It’s kicking off with an initial $400 million in pledges from backers and a plan to pull in $2.5 billion more over the next five years.

Then, ZDNET contributor Jack Wallen reports his local AI of choice is the open-source Ollama. He recently wrote a piece on how to make using this local LLM easier with the help of a browser extension, which he uses on Linux. But on MacOS devices, Jack turns to an easy-to-use, free app called Msty.

In videos, At the AI Action Summit in Paris, Yann LeCun underscored a fundamental shift in artificial intelligence—one that moves beyond the brute-force approach of large language models in his presentation, “The Next AI Revolution”. The future of AI hinges on *world models*—structured, adaptive representations that can infer, reason, and plan.

And, DeepSeek is not a threat to OpenAI says, Sridhar Ramaswamy, CEO Snowflake, the $60BN public company with $3.5BN in revenue growing 30% per year. Sridhar joined Snowflake following his company, Neeva, being acquired by them for $150M. Mr. Ramaswamy spent 15 years growing Google’s AdWords from $1.5B to over $100B.

Then, former Google CEO Eric Schmidt with Alliant founder Craig Mundie talk with David Rubenstein about the promise, and potential peril, of a new frontier in artificial intelligence — and their collaboration with the late Henry Kissinger on his final book, Genesis. Recorded January 26, 2025 at The 92nd Street Y, in New York City, New York.