Toggle light / dark theme

Grok Imagine, xAI’s new AI image and video generator, lets you make NSFW content

Elon Musk’s AI company has officially rolled out Grok Imagine, xAI’s image and video generator, to all SuperGrok and Premium+ X subscribers on its iOS app. And true to form for Musk, who positions Grok as an unfiltered, boundary-pushing AI, the generator allows users to make NSFW content.

Grok Imagine, which promises to turn text or image prompts into a 15-second video featuring native audio, has a “spicy mode” that allows users to generate sexually explicit content, including partial female nudity. There are limits to how explicit one can get. Many of our spicier prompts — made in the name of Journalism! — generate blurred-out images that are “moderated” and therefore inaccessible. We were, however, able to generate semi-nude imagery.

The NSFW content is unsurprising for xAI, given the release last month of a raunchy, hyper-sexualized anime AI companion. But just as Grok’s unrestrained nature was entertaining until it started spewing hateful, antisemitic, misogynistic content, Grok Imagine could be poised to bring its own set of unintended consequences.

Scientists just cracked the code to editing entire chromosomes flawlessly

A group of Chinese scientists has created powerful new tools that allow them to edit large chunks of DNA with incredible accuracy—and without leaving any trace. Using a mix of advanced protein design, AI, and clever genetic tweaks, they’ve overcome major limitations in older gene editing methods. These tools can flip, remove, or insert massive pieces of genetic code in both plants and animals. To prove it works, they engineered rice that’s resistant to herbicides by flipping a huge section of its DNA—something that was nearly impossible before.

The Future of Science Lies BEYOND Materialism | Two AIs Discuss Podcast #199

The hosts delve into “The Future of Science” (Будущее Науки) by Viktor Filaletov (Виктор Филалетов), offering a profound exploration of science’s fundamental nature, evolving methodology, and crucial future prospects. The sources consistently portray science as a systematic process of knowledge acquisition, driven by the meticulous study of regularities and an unwavering commitment to understanding reality. At its core, scientific activity involves rigorous observation, precise experimentation, and the development of robust theories through the generalization of observations and facts. This entire scientific work is depicted as a deeply intellectual activity, fueled by intellectual curiosity and the unyielding pursuit of objective truth.

A significant focus is placed on scientific methodology, highlighting the importance of systematic research, the interplay of logic and intuition, and precise data analysis in tackling diverse scientific problems and achieving groundbreaking scientific discoveries. Scientific progress is depicted as a continuous, dynamic process, requiring constant critical thinking, scientific skepticism, and an openness to challenge established theoretical frameworks for ongoing intellectual development. The text distinguishes between fundamental research and applied research, acknowledging the vital role of both in advancing knowledge and understanding the world.

The sources candidly address the inherent challenges in scientific research, including navigating uncertainty in science and confronting the inherent limits of human understanding and perception. They underscore the vital human element, where scientific thought and scientific creativity are integral to the investigative process. Furthermore, crucial ethical considerations and profound scientific responsibility are discussed, particularly regarding the immense societal impact of science and its implications for future generations. The relentless pursuit of scientific truth often necessitates confronting the unknown and achieving scientific validation through empirical evidence. The text also touches upon the philosophical aspects of science and the importance of scientific integrity in all endeavors.

Looking towards the future of science, the discourse emphasizes relentless innovation and accelerated technological advancement. A compelling and recurring theme is the necessity of interdisciplinary research and expanded global scientific collaboration to effectively address and solve complex global challenges. The ongoing evolution of scientific thought and collective intellectual development are posited as essential drivers for uncovering new scientific breakthroughs and pushing the very frontiers of knowledge. Ultimately, scientific inquiry is presented as an unending pursuit of understanding, continually redefining our comprehension of the world and ensuring the future of scientific endeavor remains vibrant and impactful. #science #philosophy #FutureOfScience #ScientificResearch #ScienceProgress #KnowledgeDiscovery #HumanityForward #deepdive #skeptic #podcast #synopsis #books #bookreview #science #aiart #ai #artificialintelligence #booktube #aigenerated #videoessay

More scientific papers being written with help of ChatGPT—especially in computer science

Since its release in November of 2022, the use of ChatGPT and other large language models (LLMs) has proliferated throughout many disciplines, providing writing assistance for everything from speeches to contracts. So, it may not be surprising that some scientists might utilize ChatGPT to quicken the pace at which they publish their research.

2025 UP.Partners Moving World Report

Emerging technologies, such as autonomous vehicles, drones, and humanoid robotics, are rapidly transforming industries and revolutionizing transportation, logistics, and other sectors, driven by decreasing costs, economic incentives, and significant investments.

Questions to inspire discussion.

Emerging Technologies 🚁 Q: How are drones revolutionizing delivery services? A: Drones are delivering millions of goods with insane energy efficiency, cost-effectiveness, and convenience, exemplified by Google’s Wing program partnering with Walmart and DoorDash, and Zipline saving half a million lives delivering medicine worldwide. 🤖 Q: What roles can humanoid robots fill in the workforce?

Detecting early-stage tumors with a blood sample

Current methods for cancer diagnosis are based on identifying biomarkers — molecules that reveal a particular state or process in the body – produced by the tumor or associated proteins. Not surprisingly, these markers are more abundant once the tumor has already developed significantly. And the more advanced the tumor, the more difficult it is to find effective treatment options.

Now, a research team has developed a test that can detect early-stage solid tumors with just a blood sample. In addition, the test also provides information relevant to the choice of treatment.

To achieve this early detection, the team focused the test not on the markers produced by the tumor, but on the body’s defensive reaction to the cancer. Since the 19th century it has been known that the emergence of cancer cells causes changes in the immune system, and it was also known that these changes are more intense in cancer’s earliest stages. But they had never been used for diagnosis. The new study focuses on them, specifically on the changes in blood proteins derived from cancer’s disruption of the immune system.

But this approach posed a problem to the team: human blood contains more than 5,000 proteins, which makes it extremely difficult to analyze. So they used bioinformatics analysis and narrowed the scope of the study to five amino acids: lysine, tryptophan, tyrosine, cysteine and cysteine not bound to disulphide bonds.

They then subjected the sample to reactions that emit fluorescence when light is applied to them — fluorogenic reactions — and revealed the exact concentration of each of these amino acids in the plasma. Using the artificial intelligence tool machine learning, they identified patterns in these concentrations that could be translated into diagnostic signals.

As they explain in the published article, they applied this technique to samples from 170 patients and were able to identify 78% of cancers with a 0% false positive rate.

/* */