Menu

Blog

Archive for the ‘robotics/AI’ category: Page 13

Jun 26, 2024

Biodegradable Oxide Neuromorphic Transistors for Neuromorphic Computing and Anxiety Disorder Emulation

Posted by in categories: health, robotics/AI, sustainability

Brain-inspired neuromorphic computing and portable intelligent electronic products have received increasing attention. In the present work, nanocellulose-gated indium tin oxide neuromorphic transistors are fabricated. The device exhibits good electrical performance. Short-term synaptic plasticities were mimicked, including excitatory postsynaptic current, paired-pulse facilitation, and dynamic high-pass synaptic filtering. Interestingly, an effective linear synaptic weight updating strategy was adopted, resulting in an excellent recognition accuracy of ∼92.93% for the Modified National Institute of Standard and Technology database adopting a two-layer multilayer perceptron neural network. Moreover, with unique interfacial protonic coupling, anxiety disorder behavior was conceptually emulated, exhibiting “neurosensitization”, “primary and secondary fear”, and “fear-adrenaline secretion-exacerbated fear”. Finally, the neuromorphic transistors could be dissolved in water, demonstrating potential in “green” electronics. These findings indicate that the proposed oxide neuromorphic transistors would have potential as implantable chips for nerve health diagnosis, neural prostheses, and brain-machine interfaces.

Keywords: anxiety disorders; neuromorphic computing; oxide neuromorphic transistors; proton coupling; synaptic plasticity.

PubMed Disclaimer

Jun 26, 2024

Indium-Gallium-Zinc Oxide-Based Synaptic Charge Trap Flash for Spiking Neural Network-Restricted Boltzmann Machine

Posted by in categories: biological, robotics/AI

Recently, neuromorphic computing has been proposed to overcome the drawbacks of the current von Neumann computing architecture. Especially, spiking neural network (SNN) has received significant attention due to its ability to mimic the spike-driven behavior of biological neurons and synapses, potentially leading to low-power consumption and other advantages. In this work, we designed the indium-gallium-zinc oxide (IGZO) channel charge-trap flash (CTF) synaptic device based on a HfO2/Al2O3/Si3N4/Al2O3 layer. Our IGZO-based CTF device exhibits synaptic functions with 128 levels of synaptic weight states and spike-timing-dependent plasticity. The SNN-restricted Boltzmann machine was used to simulate the fabricated CTF device to evaluate the efficiency for the SNN system, achieving the high pattern-recognition accuracy of 83.9%. We believe that our results show the suitability of the fabricated IGZO CTF device as a synaptic device for neuromorphic computing.

Keywords: charge trap flash; neuromorphic computing; nonvolatile memory; oxide semiconductor; spiking neural network.

PubMed Disclaimer

Jun 26, 2024

Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application

Posted by in categories: biological, robotics/AI

Owing to the 4th Industrial Revolution, the amount of unstructured data, such as voice and video data, is rapidly increasing. Brain-inspired neuromorphic computing is a new computing method that can efficiently and parallelly process rapidly increasing data. Among artificial neural networks that mimic the structure of the brain, the spiking neural network (SNN) is a network that imitates the information-processing method of biological neural networks. Recently, memristors have attracted attention as synaptic devices for neuromorphic computing systems. Among them, the ferroelectric doped-HfO2-based ferroelectric tunnel junction (FTJ) is considered as a strong candidate for synaptic devices due to its advantages, such as complementary metal-oxide-semiconductor device/process compatibility, a simple two-terminal structure, and low power consumption. However, research on the spiking operations of FTJ devices for SNN applications is lacking. In this study, the implementation of long-term depression and potentiation as the spike timing-dependent plasticity (STDP) rule in the FTJ device was successful. Based on the measured data, a CrossSim simulator was used to simulate the classification of handwriting images. With a high accuracy of 95.79% for the Mixed National Institute of Standards and Technology (MNIST) dataset, the simulation results demonstrate that our device is capable of differentiating between handwritten images. This suggests that our FTJ device can be used as a synaptic device for implementing an SNN.

Keywords: FTJ; SNN; STDP; neuromorphic computing; synaptic devices.

PubMed Disclaimer

Jun 26, 2024

Superlow Power Consumption Memristor Based on Borphyrin-Deoxyribonucleic Acid Composite Films as Artificial Synapse for Neuromorphic Computing

Posted by in categories: biotech/medical, chemistry, robotics/AI

Memristor synapses based on green and pollution-free organic materials are expected to facilitate biorealistic neuromorphic computing and to be an important step toward the next generation of green electronics. Metalloporphyrin is an organic compound that widely exists in nature with good biocompatibility and stable chemical properties, and has already been used to fabricate memristors. However, the application of metalloporphyrin-based memristors as synaptic devices still faces challenges, such as realizing a high switching ratio, low power consumption, and bidirectional conductance modulation. We developed a memristor that improves the resistive switching (RS) characteristics of Zn(II)meso-tetra(4-carboxyphenyl) porphine (ZnTCPP) by combining it with deoxyribonucleic acid (DNA) in a composite film. The as-fabricated ZnTCPP-DNA-based device showed excellent RS memory characteristics with a sufficiently high switching ratio of up to ∼104, super low power consumption of ∼39.56 nW, good cycling stability, and data retention capability. Moreover, bidirectional conductance modulation of the ZnTCPP-DNA-based device can be controlled by modulating the amplitudes, durations, and intervals of positive and negative pulses. The ZnTCPP-DNA-based device was used to successfully simulate a series of synaptic functions including long-term potentiation, long-term depression, spike time-dependent plasticity, paired-pulse facilitation, excitatory postsynaptic current, and human learning behavior, which demonstrates its potential applicability to neuromorphic devices. A two-layer artificial neural network was used to demonstrate the digit recognition ability of the ZnTCPP-DNA-based device, which reached 97.22% after 100 training iterations. These results create a new avenue for the research and development of green electronics and have major implications for green low-power neuromorphic computing in the future.

Keywords: artificial synapses; memristors; neuromorphic computing; porphyrin−DNA composite films; superlow power consumption.

PubMed Disclaimer

Jun 26, 2024

Controllable digital and analog resistive switching behavior of 2D layered WSe2 nanosheets for neuromorphic computing

Posted by in categories: futurism, robotics/AI

Memristors with controllable resistive switching (RS) behavior have been considered as promising candidates for synaptic devices in next-generation neuromorphic computing. In this work, two-terminal memristors with controllable digital and analog RS behavior are fabricated based on two-dimensional (2D) WSe2 nanosheets. Under a relatively high operating voltage of 4 V, the memristor demonstrates stable and reliable non-volatile bipolar digital RS with a high switching ratio of 6.3 × 104. On the other hand, under a relatively low operation voltage, the memristor exhibits analog RS with a series of tunable resistance states. The fabricated memristors can work as an artificial synapse with fundamental synaptic functions, such as long-term potentiation (LTP) and depression (LTD) as well as paired-pulse facilitation (PPF). More importantly, the memristor demonstrates high conductance modulation linearity with the calculated nonlinear parameter for conductance as-0.82 in the LTP process, which is beneficial to improving the accuracy of neuromorphic computing. Furthermore, the neuromorphic computing of file types and image recognition can be emulated based on a constructed three-layer artificial neural network (ANN) with a recognition accuracy that can reach up to 95.9% for small digits. In addition, memristors can be used to emulate the learning-forgetting experience of the human brain. Consequently, the memristor based on 2D WSe2 nanosheets not only exhibits controllable RS behavior but also simulates synaptic functions and is expected to be a potential candidate for future neuromorphic computing applications.

PubMed Disclaimer

Jun 25, 2024

AMD talks 1.2 million GPU AI supercomputer to compete with Nvidia — 30X more GPUs than world’s fastest supercomputer

Posted by in categories: robotics/AI, supercomputing

The best supercomputers in the world have less than 50,000 GPUs, how in the world is someone going to make an AI cluster with 1.2 million GPUs?

Jun 25, 2024

AI needs design consciousness

Posted by in categories: ethics, robotics/AI

My thoughts on ethics and human-centric design in AI advancements.

Jun 25, 2024

China returns samples from the moon’s far side in historic 1st (video)

Posted by in categories: robotics/AI, space travel

The lunar material touched down in China’s Inner Mongolia Autonomous Region early Tuesday morning (June 25).

Jun 25, 2024

Researchers propose the next platform for brain-inspired computing

Posted by in categories: mathematics, robotics/AI, sustainability

Computers have come so far in terms of their power and potential, rivaling and even eclipsing human brains in their ability to store and crunch data, make predictions and communicate. But there is one domain where human brains continue to dominate: energy efficiency.

“The most efficient computers are still approximately four orders of magnitude — that’s 10,000 times — higher in energy requirements compared to the human brain for specific tasks such as image processing and recognition, although they outperform the brain in tasks like mathematical calculations,” said UC Santa Barbara electrical and computer engineering Professor Kaustav Banerjee, a world expert in the realm of nanoelectronics. “Making computers more energy efficient is crucial because the worldwide energy consumption by on-chip electronics stands at #4 in the global rankings of nation-wise energy consumption, and it is increasing exponentially each year, fueled by applications such as artificial intelligence.” Additionally, he said, the problem of energy inefficient computing is particularly pressing in the context of global warming, “highlighting the urgent need to develop more energy-efficient computing technologies.”

Neuromorphic computing has emerged as a promising way to bridge the energy efficiency gap. By mimicking the structure and operations of the human brain, where processing occurs in parallel across an array of low power-consuming neurons, it may be possible to approach brain-like energy efficiency.

Jun 25, 2024

Convolutional Kolmogorov-Arnold Networks (Convolutional KANs): An Innovative Alternative to the Standard Convolutional Neural Networks (CNNs)

Posted by in categories: innovation, robotics/AI

Computer vision, one of the major areas of artificial intelligence, focuses on enabling machines to interpret and understand visual data. This field encompasses image recognition, object detection, and scene understanding. Researchers continuously strive to improve the accuracy and efficiency of neural networks to tackle these complex tasks effectively. Advanced architectures, particularly Convolutional Neural Networks (CNNs), play a crucial role in these advancements, enabling the processing of high-dimensional image data.

One major challenge in computer vision is the substantial computational resources required by traditional CNNs. These networks often rely on linear transformations and fixed activation functions to process visual data. While effective, this approach demands many parameters, leading to high computational costs and limiting scalability. Consequently, there’s a need for more efficient architectures that maintain high performance while reducing computational overhead.

Current methods in computer vision typically use CNNs, which have been successful due to their ability to capture spatial hierarchies in images. These networks apply linear transformations followed by non-linear activation functions, which help learn complex patterns. However, the significant parameter count in CNNs poses challenges, especially in resource-constrained environments. Researchers aim to find innovative solutions to optimize these networks, making them more efficient without compromising accuracy.

Page 13 of 2,292First1011121314151617Last