Toggle light / dark theme

Quantum Swing: a pendulum that moves forward and backwards at the same time

One of those freaky states of Quantum. Wild.


Two-quantum oscillations of atoms in a semiconductor crystal are excited by ultrashort terahertz pulses. The terahertz waves radiated from the moving atoms are analyzed by a novel time-resolving method and demonstrate the non-classical character of large-amplitude atomic motions.

The classical pendulum of a clock swings forth and back with a well-defined elongation and velocity at any instant in time. During this motion, the total energy is constant and depends on the initial elongation which can be chosen arbitrarily. Oscillators in the quantum world of atoms and molecules behave quite differently: their energy has discrete values corresponding to different quantum states. The location of the atom in a single quantum state of the oscillator is described by a time-independent wavefunction, meaning that there are no oscillations.

Oscillations in the quantum world require a superposition of different quantum states, a so-called coherence or wavepacket. The superposition of two quantum states, a one-phonon coherence, results in an atomic motion close to the classical pendulum. Much more interesting are two-phonon coherences, a genuinely non-classical excitation for which the atom is at two different positions simultaneously. Its velocity is nonclassical, meaning that the atom moves at the same time both to the right and to the left as shown in the movie. Such motions exist for very short times only as the well-defined superposition of quantum states decays by so-called decoherence within a few picoseconds (1 picosecond = 10-12 s). Two-phonon coherences are highly relevant in the new research area of quantum phononics where tailored atomic motions such as squeezed and/or entangled phonons are investigated.

New study looks into the everyday miracle that is water

Whatever the truth about claims that cloud-seeding was responsible for the floods in March, one thing is certain – during the downpours, thousands of people in the UAE were exposed to a bizarre quantum substance at the focus of ­intense scientific research.

Colourless and odourless, its behaviour is unlike that of any other known compound. While most shrink when they freeze, this stuff expands. It’s very hard to be heated up but once turned into liquid, it’s extremely resistant to pressure.

Exposure to it in any form can be fatal. Its liquid form is responsible for dozens of deaths each year in the UAE.

Google Announced Their D-Wave 2X Quantum Computer Succesfully Works

It seems that the D-Wave Computer does work, and the theory is that the hardware is 3,600 times faster than other supercomputers. It is the nearest we have to quantum computing, and there have been two tests leading to the announcement that it was far more quickly than simulated annealing which is a copy of quantum computation carried out on a standard computer chip.

IBM’s Quantum Computing Is For ‘Anyone’, But Is It For Everyone?

Eventually it will be in everything tech. This version by IBM; is not for the masses. However, don’t worry; it’s coming.


Users will eventually be able to contribute and review results in the coming community, which will be hosted on the IBM Quantum Experience. So kudos to IBM for properly managing expectations.

The researchers at IBM have created a quantum processor, made up of five superconducting quantum bits (qubits).

The company said anyone can run experiments on the computing platform by accessing its website connected to the IBM Cloud. Arvind Krishna, senior vice president and director, IBM Research, noted that quantum computers would be very different from even today’s top supercomputers in looks, structure, and capabilities. A universal quantum computer, once built, has the potential to solve problems that are not solvable with today’s classical computers, IBM said. It can also allow for analysis of much larger quantities of data than can be done by today’s supercomputers.

IBM develops quantum as a service

So, I did get my acceptance to the IBM Quantum experience this morning. ANd, as part of their disclaimer they did state it was only a preview version which was good; and noted that there maybe bugs/ glitches and to notate them. So kudos to IBM for properly managing expectations.


IBM’s Zurich Laboratory has made its five-bit quantum computer available to researchers through a cloud service.

The researchers at IBM have created a quantum processor, made up of five superconducting quantum bits (qubits).

IBM said users will be able to access the technology with a desktop or mobile device through a cloud-enabled quantum computing platform.

IBM Brings Quantum Computing to the Masses

My verdict will continue to be out on this version. Unless we truly see a QC environment where the full testing of Cryptography, infrastructure, etc. is tested then at best we’re only looking at a pseudo version of QC. Real QC is reached when the infrastructure fully can take advantage of QC not just one server or one platform means we have arrived on QC. So, I caution folks from over-hyping things because the backlash will be extremely costly and detrimental to many.


IBM has taken its quantum computing technology to the cloud to enable users to run experiments on an IBM quantum processor.

Big Blue has come a long way, baby. IBM announced it is making quantum computing available on the IBM Cloud to accelerate innovation in the field and find new applications for the technology.

What IBM’s new quantum processor means for the future of computing

Here is the impact of today’s IBM QC announcement & if proven real then the following will certainly be fasttracked:

1. IBM is now ahead of everyone in QC

2. China & Russia are now going to heat up their own QC efforts.

3. Google and Microsoft will accelerate their efforts to showcase QC in many areas of IoT including AI.

4. Apple will now need to join the QC revolution or face a future of non-existence in the long run because devices, networks & platforms, communications, etc. will now be quick to make the transition.

5. Robotics, genetic research capabilities and other medical technologies, etc. will be drastically advance to levels that we have.

/* */