Toggle light / dark theme

Last year, British theoretical physicist Stephen Hawking hinted at research he and a couple of colleagues were working on that could solve the infamous black hole information paradox, which states that information about matter that gets destroyed by a black hole, according to Einstein’s general theory of relativity, is supposed to be fundamentally conserved, according to our understanding of quantum mechanics.

Now, that paper has finally been posted online, and as hinted by Hawking back in August, the solution to this paradox could be black hole ‘hairs’ that form on the event horizon, making a kind of two-dimensional holographic imprint of whatever’s been sucked in. He says the existence of these hairs is provable, and their existence could win him a Nobel Prize.

But let’s back up a bit, because there’s a lot to wrap your head around here.

Read more

As I have mentioned in some of my other reports and writings; infrastructure (power grids, transportation, social services, etc.) is a key area that we need to modernize and get funding soon in place given the changes that are coming. As Russia’s own power stations were hacked; it will not be anything to when the more sophisticated releases of the Quantum Internet and Platforms are finally releasing to the main stream. Someone last week asked me what kept me up at night worrying; I told them our infrastructure and we have not been planning or modernizing it to handle the changes that are coming in the next 5 years much less the next 7 years.


With cyberattacks gaining in sophistication and volume, we can expect to see a range of new targets in the year ahead.

Read more

Good report from Brookings Institute on the longer term IT Transformation. It highlights the need for countries and industry needs to be prepared for the magnitude of the transformation that is on the horizon. I support this perspective that there will indeed be a need for programs to be in place to retool,educate, and support workers that will be displaced. Also, there is a larger threat; and that is we must ensure that our critical infrastructure like Power Grids, banks, military, social prog, etc. are modernized into the changes that are coming from AI & Quantum.


Kemal Dervis examines the impact of artificial intelligence on our economies and labor markets.

Read more

Many folks often ask “What’s next for technology after Quantum?” Many suggests space, some folks suggest some sort of vNext technology or science that hasn’t been identified or fully discovered, etc. It truly is something that many of us have been asking ourselves for the past few years. However, there is still so much that still needs to be experimented with in ragards to Quantum; including teleporting information via Quantum from a black hole. And, what and how will this type of experiment improve our own usage of Quantum in the future.


The information that can be extracted from this hypothetical black hole is quantum information, meaning that instead of existing in either a 0 or 1 state, like a classical bit, the data collected would exist as a superposition of all potential states.

“We’ve demonstrated concretely that it is possible, in principle, to retrieve some quantum information from a black hole,” said study co-author Adam Jermyn, a doctoral candidate at the University of Cambridge in England. [The 9 Biggest Unsolved Mysteries in Physics]

But don’t go tossing your computer into the nearest black hole just yet. The amount of information that can be retrieved is tiny — just one quantum bit, or qubit. What’s more, getting that bit would likely mean sacrificing the possibility of retrieving other quantum information from the black hole, the researchers reported in October 2015 in the preprint journal arXiv.

Read more

Very interesting. Teleporting and it’s potential use is really worth keeping a closer eye on especially with the progresses that we have seen so far with Quantum. Just 2 weeks ago, scientists were able to prove that one atom was able to co-exist in 2 locations during the same point of time.


Many members of the Stanford community came to an event called “Teleportation” last December. The event featured Tongcang Li, an assistant professor of physics and astronomy and assistant professor of electrical and computer engineering at Purdue University, who discussed his work in quantum superposition, or having an entity simultaneously exist in two locations.

The event was organized by Anna Chukaeva, a first year student at the Graduate School of Business, and Evgeny Duhovny, a local graphic artist and DJ. The two have begun organizing campus events in conjunction with ArtSoFFT, a local group (not affiliated with Stanford). Driven by a desire to popularize and spread a love of science, the group has begun organizing a series of events at Stanford featuring scientists discussing their work.

“What we were looking [for] was a researcher who has published in the scientific journals — so it’s not just someone who is popularizing it. We wanted a real scientist who is doing work in this field, and who is doing breakthrough technology,” Chukaeva said.

Read more

This article just posted today. Great news; the author did reference the risks that we face with our information, etc. as it relates with countries like Russia and China who are investing in Quantum.


The impact of quantum computation on the financial markets will be direct and swift, and introduces new highs and new lows, opening a playing field of near limitless potential.

Posted by Ben Rossi.

Read more

“Greetings. We are from the future. Everything is going to be alright. The future is a beautiful place. But you will need some training in order to get there…”

More: http://WeAreFromTheFuture.com

Words, Voice & Editing by Garret John LoPorto.
Connect on Facebook: http://on.fb.me/GarretJohn
& on Twitter: http://twitter.com/garretloporto
Music: “Time” by Hans Zimmer
Hans Zimmer feat. Satellite Empire — Time (The Machinist Remix)

Science:
“Quantum mechanics explains efficiency of photosynthesis”
“Energy transfer in light-harvesting macromolecules is assisted by specific vibrational motions of the chromophores,” said Alexandra Olaya-Castro (UCL Physics & Astronomy), supervisor and co-author of the research. “We found that the properties of some of the chromophore vibrations that assist energy transfer during photosynthesis can never be described with classical laws, and moreover, this non-classical behaviour enhances the efficiency of the energy transfer.”

“The negative values in these probability distributions are a manifestation of a truly quantum feature, that is, the coherent exchange of a single quantum of energy,” explained Edward O’Reilly (UCL Physics & Astronomy), first author of the study. “When this happens electronic and vibrational degrees of freedom are jointly and transiently in a superposition of quantum states, a feature that can never be predicted with classical physics.”

http://www.ucl.ac.uk/news/news-articles/0114/090114-Quantum-…osynthesis

Sharing my recent posting that I did on Linkedin Pulse. I will admit that I purposely delayed this article in concerns of creating a panic; however, with the progress that has been occuring across the globe and in some cases accelerated the maturity of this technology; I believe it is time for governments, industries, etc. to start thinking about their own broader strategic plans around Quantum as well as how they will address any impacts.


Quantum Computing is making great progress in so many areas such as chips, network/ Internet, etc. each month. And, many industries such as financials, telecom, tech, and public sector namely defense and space, etc. have made big investments in this technology as well as have developed some interesting partnerships such as Wall Street. Everything looks so promising and exciting for our future when we look at the various ways how Quantum Computing can change our lives around AI, improving the medical technologies, how we interact with devices (wearables, VR, etc.), and even how we travel will advance through this technology. The future looks extremely rosy and bright; right?.

I believe it can be with Quantum; however, in every major shift/ disruption in technology, there is always a transformation progression that has to naturally occur thru stages. And, Quantum is no different; however, the disruption that Quantum will bring is going to be on a much more massive scale than what we have seen in the past. The reason why is Quantum is truly going to impact and improve every area of technology not just in devices, or a platform, AI, VR, etc.; I mean everything in technology will be changed and improved by Quantum over time.

Granted this will not be like a major change overnight like we saw with the iPhone, etc. This initial change will occur over a series of years possibly over the next 7 to 10 years. As each country continues to accelerate in their own efforts to be a fully Quantumized; we need to understand where the potential risks exist and have a good plan for how we plan to address our own risks and challenges during and after this transformation.

Read more

Loving the progress around Quantum.


Today, a group of scientists — John A. Rogers, Eric Seabron, Scott MacLaren and Xu Xie from the University of Illinois at Urbana-Champaign; Slava V. Rotkin from Lehigh University; and, William L. Wilson from Harvard University — are reporting on the discovery of an important method for measuring the properties of nanotube materials using a microwave probe. Their findings have been published in ACS Nano in an article called: “Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.”

The researchers studied single-walled carbon nanotubes. These are 1-dimensional, wire-like nanomaterials that have electronic properties that make them excellent candidates for next generation electronics technologies. In fact, the first prototype of a nanotube computer has already been built by researchers at Stanford University. The IBM T.J. Watson Research Center is currently developing nanotube transistors for commercial use.

For this study, scientists grew a series of parallel nanotube lines, similar to the way nanotubes will be used in computer chips. Each nanotube was about 1 nanometer wide — ten times smaller than expected for use in the next generation of electronics. To explore the material’s properties, they then used microwave impedance microscopy (MIM) to image individual nanotubes.

Read more