Menu

Blog

Archive for the ‘quantum physics’ category: Page 664

Jun 12, 2018

Britain’s first ‘unhackable’ internet network may solve quantum computing threat

Posted by in categories: cybercrime/malcode, encryption, finance, internet, quantum physics

S cientists have created the UK’s first ever “unhackable” fibre network in anticipation of the dawn of quantum computers, a technology that could render current security systems completely useless and leave critical infrastructure, banking and healthcare networks open to hackers.

The network, constructed by researchers from BT, the University of York and the University of Cambridge over the past two years, is secured by the laws of quantum physics which dictate how light and matter behave at a fundamental level. Using this, it is able to block anyone attempting to crack into the fibre link.

This could be a game changer for the healthcare and financial sector, when it is feared existing encryption…

Continue reading “Britain’s first ‘unhackable’ internet network may solve quantum computing threat” »

Jun 11, 2018

Intel is now capable of producing full silicon wafers of quantum computing chips

Posted by in categories: computing, quantum physics

Last year, Intel was able to take a few steps forward towards the commercialization of quantum computing. A 17-qubit superconducting chip was built followed by CEO Brian Krzanich showing off a test chip at CES 2018 with 49 qubits.

Unlike previous quantum efforts at Intel, this latest batch of wafers are focusing on spin qubits instead of superconducting qubits. This secondary technology is still a few years behind superconducting quantum efforts but could turn out to be more easily scalable.

Moving forward, Intel now has the capability to produce up to five silicon wafers every week containing up to 26-qubit quantum chips. This achievement means that Intel has greatly increased the number of quantum devices in existence and could be looking to increase the number of qubits steadily in the coming years.

Continue reading “Intel is now capable of producing full silicon wafers of quantum computing chips” »

Jun 11, 2018

Evidence for a new property of quantum matter revealed

Posted by in category: quantum physics

A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports.

Read more

Jun 10, 2018

Life lessons from artificial intelligence: What Microsoft’s AI chief wants computer science grads to know about the future

Posted by in categories: augmented reality, quantum physics, robotics/AI, science

Artificial intelligence has exploded, and perhaps no one knows it more than Harry Shum, the executive vice president in charge of Microsoft’s AI and Research Group, which has been at the center of a major technological shift inside the company.

Delivering the commencement address Friday at the University of Washington’s Paul G. Allen School of Computer Science and Engineering, Shum drew inspiration from three emerging technologies — quantum computing, AI, and mixed reality — to deliver life lessons and point out the future of technology for the class of 2018.

Continue reading “Life lessons from artificial intelligence: What Microsoft’s AI chief wants computer science grads to know about the future” »

Jun 9, 2018

Intel’s New Path to Quantum Computing

Posted by in categories: computing, quantum physics

Intel’s director of quantum hardware, Jim Clarke, explains the company’s two quantum computing technologies.

Read more

Jun 8, 2018

Two Quantum Computing Bills Are Coming to Congress

Posted by in categories: computing, government, quantum physics

Quantum computing has made it to the United States Congress. If this field of quantum information is the new space race, the US doesn’t want to fall behind.

After all, China has funded a National Laboratory for Quantum Information Sciences, set to open in 2020, and has launched a satellite meant to test long-distance quantum secure information. Two new bills, one of which is still a draft, are meant to establish the US as a leader in the field.

“Quantum computing is the next technological frontier that will change the world, and we cannot afford to fall behind,” said Senator Kamala Harris (D-California) in a statement passed to Gizmodo. “We must act now to address the challenges we face in the development of this technology—our future depends on it.”

Continue reading “Two Quantum Computing Bills Are Coming to Congress” »

Jun 8, 2018

Volkswagen tests quantum computing in battery research

Posted by in categories: business, information science, internet, quantum physics, robotics/AI

For the first time, Volkswagen experts have succeeded in simulating industrially relevant molecules using a quantum computer. This is especially important for the development of high-performance electric vehicle batteries. The experts have successfully simulated molecules such as lithium-hydrogen and carbon chains. Now they are working on more complex chemical compounds. In the long term, they want to simulate the chemical structure of a complete electric vehicle battery on a quantum computer. Their objective is to develop a “tailor-made battery”, a configurable chemical blueprint that is ready for production. Volkswagen is presenting its research work connected with quantum computing at the CEBIT technology show (Hanover, June 12–15).

Martin Hofmann, CIO of the Volkswagen Group, says: “We are focusing on the modernization of IT systems throughout the Group. The objective is to intensify the digitalization of work processes – to make them simpler, more secure and more efficient and to support new business models. This is why we are combining our core task with the introduction of specific key technologies for Volkswagen. These include the Internet of Things and artificial intelligence, as well as quantum computing.”

The objective is a “tailor-made battery”, a configurable blueprint Using newly developed algorithms, the Volkswagen experts have laid the foundation for simulating and optimizing the chemical structure of high-performance electric vehicle batteries on a quantum computer. In the long term, such a quantum algorithm could simulate the chemical composition of a battery on the basis of different criteria such as weight reduction, maximum power density or cell assembly and provide a design which could be used directly for production. This would significantly accelerate the battery development process, which has been time-consuming and resource-intensive to date.

Continue reading “Volkswagen tests quantum computing in battery research” »

Jun 6, 2018

Quantum Computing: Is it the end of blockchain?

Posted by in categories: bitcoin, cybercrime/malcode, encryption, internet, quantum physics

E xperts are suggesting quantum computing may render blockchain obsolete. As the tech giants such as Google and IBM are showing interest in Quantum computing the danger is evident. According to MIT Technology Review, this type of computing can hack the cryptography hash that universally secures the blockchain and in general the internet. This would suggest quantum computers may complete fraudulent transactions and steal coins. With its exponential power, quantum computers threaten blockchain’s future security.

Blockchain consists of encrypted nodes connected on a chain, which currently makes it almost impossible to hack. The order of entries adheres to the blockchain protocol, which makes it counterfeit-resistant.

To successfully hack a blockchain, you would need to alter both the targeted block and all of the blocks connected. Blockchains are synced throughout a peer-to-peer network. In this type of system, there is no central point of failure for hackers to penetrate. For a hacker to have a chance of penetrating the network, they would need to simultaneously alter at least 51% of the blockchain.

Continue reading “Quantum Computing: Is it the end of blockchain?” »

Jun 6, 2018

The Microsoft approach to quantum computing

Posted by in categories: computing, information science, quantum physics

Together, this full quantum stack pairs with familiar tools to create an integrated, streamlined environment for quantum processing.

Scalability, from top to bottom

Quantum computers can help address some of the world’s toughest problems, provided the quantum computer has enough high-quality qubits to find the solution. While the quantum systems of today may be able to add a high number of qubits, the quality of the qubits is the key factor in creating useful scale. From the cooling system to qubits to algorithms, scalability is a fundamental part of the Microsoft vision for quantum computing.

Continue reading “The Microsoft approach to quantum computing” »

Jun 4, 2018

Best of last week: Flux capacitor invented, a better 3D printer and the true benefits of vitamins

Posted by in categories: 3D printing, biological, cosmology, genetics, health, quantum physics, space travel

It was a good week for physics as a team with members from Australia and Switzerland invented a flux capacitor able to break time-reversal symmetry. They proposed a device based on quantum tunneling of magnetic flux around a capacitor. And another team with members from across the U.S. reported on a gravitational wave event that likely signaled the creation of a black hole—the merger of two neutron stars.

In biology news, a team of engineers led by Sinisa Vukelic invented a noninvasive technique to correct vision. Like LASIK, it uses lasers but is non-surgical and has few side-effects. And an international team of researchers found what they describe as the mother of all lizards in the Italian Alps, the oldest known lizard fossil, from approximately 240 million years ago. Also, a team at the University of Sydney found that walking faster could make you live longer. People do not even need to walk more, the team reported, they just need to pick up the pace of their normal stride to see an improvement in several health factors. And a team from Cal Poly Pomona discovered how microbes survive clean rooms and contaminate spacecraft—and it involved the cleaning agents themselves.

In other news, a team of researchers from the University of California and the University of Southern Queensland announced that they had identified 121 giant planets that may have habitable moons. And a team at Stanford University found that wars and clan structure might explain a strange biological event that occurred 7,000 years ago—male genetic diversity appeared to collapse for a time. Also, a team of researchers from MIT and Harvard University report the development of a 3D printer that can print data sets as physical objects—offering far more realistic, nearly true-color renderings.

Read more