Menu

Blog

Archive for the ‘quantum physics’ category: Page 666

May 21, 2018

How NASA Will Unlock the Secrets of Quantum Mechanics Aboard the ISS

Posted by in categories: particle physics, quantum physics, space

An Antares rocket launched from Virginia before sunrise this morning and is on its way to the International Space Station. Its 7,400 pounds of cargo include an experiment that will chill atoms to just about absolute zero—colder than the vacuum of space itself.

The Cold Atom Laboratory (CAL) is set to create Bose-Einstein condensates on board the ISS. But what’s a Bose-Einstein condensate? And why make it in space?

“Essentially, it’s going to allow us to do different kinds of things than we’d be able to do on Earth,” Gretchen Campbell, co-director of the University of Maryland’s Joint Quantum Institute, told Gizmodo.

Continue reading “How NASA Will Unlock the Secrets of Quantum Mechanics Aboard the ISS” »

May 21, 2018

A German Team Is Now Trying to Make the ‘Impossible’ EmDrive Engine

Posted by in categories: quantum physics, space travel

German physicists launched the SpaceDrive project to explore possible sources of error in EmDrive experiments. Their first experiment identified a possible source of false positives in past successful EmDrive tests.

Read more

May 19, 2018

Google, Alibaba Spar Over Timeline for ‘Quantum Supremacy’

Posted by in categories: computing, quantum physics

Google says it expects to reach an important milestone for quantum computing this year. Not so fast, says Alibaba.

Read more

May 19, 2018

How the nature of cause and effect will determine the future of quantum technology

Posted by in categories: business, quantum physics

Business Impact

How the nature of cause and effect will determine the future of quantum technology.

An unprecedented, global-scale test of one of quantum theory’s most counterintuitive predictions sheds new light on the nature of reality and how we can exploit it with quantum technologies.

Continue reading “How the nature of cause and effect will determine the future of quantum technology” »

May 17, 2018

This physicist’s ideas of time will blow your mind

Posted by in categories: information science, mathematics, quantum physics

Time feels real to people. But it doesn’t even exist, according to quantum physics. “There is no time variable in the fundamental equations that describe the world,” theoretical physicist Carlo Rovelli tells Quartz.

If you met him socially, Rovelli wouldn’t assault you with abstractions and math to prove this point. He’d “rather not ruin a party with physics,” he says. We don’t have to understand the mechanics of the universe to go about our daily lives. But it’s good to take a step back every once in a while.

“Time is a fascinating topic because it touches our deepest emotions. Time opens up life and takes everything away. Wondering about time is wondering about the very sense of our life. This is [why] I have spent my life studying time,” Rovelli explains.

Continue reading “This physicist’s ideas of time will blow your mind” »

May 17, 2018

Achieving scalability in quantum computing

Posted by in categories: computing, quantum physics

While a variety of quantum systems exist today, many are unable to scale to solve some of the world’s most challenging problems. Explaining the real-world obstacles of building a quantum system that scales, this post explores how Microsoft addresses these challenges through a topological qubit.

Read more

May 14, 2018

Deeper understanding of quantum chaos may be the key to quantum computers

Posted by in categories: computing, particle physics, quantum physics

New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers.

Read more

May 14, 2018

New quantum probability rule offers novel perspective of wave function collapse

Posted by in category: quantum physics

Quantum theory is based heavily on probabilities, since measuring a quantum system doesn’t produce the same outcome every time, but instead yields one of many outcomes that each occur with a certain probability. Now in a new paper, physicists have presented a new quantum probability rule for assigning probabilities to measurement outcomes, or events, that essentially combines two of the most important quantum probability rules (the Born rule and the wave function collapse rule) into one.

The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new rule in the New Journal of Physics.

One of the most important probability rules in quantum is the Born rule, which gives the probability that a measurement yields a certain event. However, things get a little bit more complicated when predicting consecutive events. Although in classical scenarios it’s possible to assign joint probabilities to consecutive events using conditioning, in quantum scenarios this is not possible since each measurement necessarily disturbs the system. So in quantum mechanics, the state must be updated with this new information after every measurement.

Continue reading “New quantum probability rule offers novel perspective of wave function collapse” »

May 14, 2018

Why the Discovery of Room-Temperature Superconductors Would Unleash Amazing Technologies

Posted by in categories: energy, quantum physics, sustainability

Superconductors are among the most bizarre and exciting materials yet discovered. Counterintuitive quantum-mechanical effects mean that, below a critical temperature, they have zero electrical resistance. This property alone is more than enough to spark the imagination.

A current that could flow forever without losing any energy means transmission of power with virtually no losses in the cables. When renewable energy sources start to dominate the grid and high-voltage transmission across continents becomes important to overcome intermittency, lossless cables will result in substantial savings.

What’s more, a superconducting wire carrying a current that never, ever diminishes would act as a perfect store of electrical energy. Unlike batteries, which degrade over time, if the resistance is truly zero, you could return to the superconductor in a billion years and find that same old current flowing through it. Energy could be captured and stored indefinitely!

Continue reading “Why the Discovery of Room-Temperature Superconductors Would Unleash Amazing Technologies” »

May 11, 2018

Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors

Posted by in categories: computing, particle physics, quantum physics

Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing.

Majorana fermions —particles being their own antiparticles—have recently attracted renewed interest in various fields of physics. In condensed matter systems, Majorana bound states (MBS) with a non-Abelian quantum exchange statistics have been proposed as a key element for topological quantum computing (2–4). One of the most promising platforms to realize MBS are one-dimensional (1D) helical spin systems being proximity-coupled to a conventional s-wave superconductor (5–9). In such a surface-confined system, the MBS can directly be investigated by local probe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS). Previously reported experiments aiming at the direct visualization and probing of the MBS have focused on self-assembled magnetic chains on superconducting Pb substrates (10–15).

Read more