Toggle light / dark theme

This new experiment will allow us to ‘see’ quantum entanglement with the naked eye

An experiment that would allow humans to directly perceive quantum entanglement for the first time has been devised by researchers in Switzerland, and they say the same technique could be used to quantum entangle two people.

While it would be incredibly cool to be the first person ever to witness quantum entanglement with your own eyes, the experiment has been designed to answer some important and far-reaching questions, such as what does quantum entanglement actually look like, and what does it feel like to be entangled with another human being?

Quantum entanglement is a strange phenomenon where two quantum particles interact in such a way that they become deeply linked, and essentially ‘share’ an existence. This means that what happens to one particle will directly and instantly affect what happens to the other — even if that other particle is many light-years away.

Physicists find extreme violation of local realism in quantum hypergraph states

(Phys.org)—Many quantum technologies rely on quantum states that violate local realism, which means that they either violate locality (such as when entangled particles influence each other from far away) or realism (the assumption that quantum states have well-defined properties, independent of measurement), or possibly both. Violation of local realism is one of the many counterintuitive, yet experimentally supported, characteristics of the quantum world.

Determining whether or not multiparticle quantum states violate local realism can be challenging. Now in a new paper, physicists have shown that a large family of multiparticle quantum states called hypergraph states violates local realism in many ways. The results suggest that these states may serve as useful resources for quantum technologies, such as quantum computers and detecting.

The physicists, Mariami Gachechiladze, Costantino Budroni, and Otfried Gühne at the University of Siegen in Germany, have published their paper on the quantum hypergraph states in a recent issue of Physical Review Letters.

The beginning of the end for encryption schemes? New quantum computer, based on five atoms, factors numbers in a scalable way

Replacing traditional encryption schemes.


What are the prime factors, or multipliers, for the number 15? Most grade school students know the answer — 3 and 5 — by memory. A larger number, such as 91, may take some pen and paper. An even larger number, say with 232 digits, can (and has) taken scientists two years to factor, using hundreds of classical computers operating in parallel.

Quantum Computer Comes Closer to Cracking RSA Encryption

Glad to see this article get published because it echoes many of the concerns established around China and Russia governments and their hackers having their infrastructures on Quantum before US, Europe, and Canada. Computer scientists at MIT and the University of Innsbruck say they’ve assembled the first five quantum bits (qubits) of a quantum computer that could someday factor any number, and thereby crack the security of traditional encryption schemes.


Shor’s algorithm performed in a system less than half the size experts expected.

Quantum technology for a new generation of inertial sensors

Could this Quantum Technology inertial sensors be utilized to provide more reliable navigation to driverless autos? Quantum again proves to serve multiple usages.


Advances in laser cooling of atoms have produced a new generation of inertial sensors based on matter-wave interferometers, which are becoming an essential technology for accurate positioning or geodesy.

/* */