Toggle light / dark theme

Researchers at the Department of Energy’s Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

“We showed how to use squeezed light – a workhorse of quantum information science – as a practical resource for microscopy,” said Ben Lawrie of ORNL’s Materials Science and Technology Division, who led the research with Raphael Pooser of ORNL’s Computational Sciences and Engineering Division. “We measured the displacement of an atomic force microscope microcantilever with sensitivity better than the standard quantum limit.”

Unlike today’s classical microscopes, Pooser and Lawrie’s quantum microscope requires quantum theory to describe its sensitivity. The nonlinear amplifiers in ORNL’s microscope generate a special quantum light source known as squeezed light.

A new D-Theory of Time, or Digital Presentism, is predicated on reversible quantum computing at large, including the notion of ‘Anti-Time’ around which the present article revolves. If you think Anti-Time is nothing but fiction, and doesn’t apply to our reality, think again. As Dr. Antonin Tuynman writes in his Foreword to The Physics of Time: D-Theory of Time & Temporal Mechanics by Alex M. Vikoulov: “Whereas quantum physics and relativity theory have been solidly in place for over a century now, stubbornly and forcedly we still cling to atavistic interpretations, which are no longer in line with the well-established findings of our experiments in physics. Amidst the turmoil of this spinning convoluted dreamtime of our digital Cyberbardo, Vikoulov carves out a trajectory for understanding.”

#AntiTime #PhysicsofTime #DTheoryofTime #DigitalPresentism #TemporalMechanics


Many temporal concepts are undoubtedly extremely counterintuitive. Time directionality and time symmetry are especially notorious ones. Any of the possible pasts may have led to the present “digital” conscious instant. This is a strange idea if you are accustomed to looking at the world in a strictly linear, deterministic way, but it reflects the uncertain world described by quantum mechanics. A major counterargument to the multitude of pasts could be a combinatorial explosion of observer ‘anti-time’-lines, i.e., digital timelines extending in the opposite temporal direction from the present temporal singularity to the Alpha Point (Digital Big Bang). So, how in the quantum multiverse are those digital anti-timelines supposed to converge once again at the Alpha Point?

The answer has to do with reversible entropy (not observable, of course, in the Newtonian classicality). Reversing information entropy is like going from higher complexity to lower complexity. As long as you continue to unwind the complexity bit-by-bit, you’ll end up at the point of the lowest possible complexity with, perhaps, 1 bit of entropy — the Alpha Point — the convergent point of all anti-timelines and simultaneously the point of origin of all observer probable timelines.

All theoretical roads lead to the physics of information, otherwise known as Digital Physics. Researchers suspect that ultimately the axioms of quantum theory will be about information: what can and can’t be done with it. One such derivation of quantum theory based on axioms about information was proposed in 2010. “Loosely speaking,” explained Jacques Pienaar, a theoretical physicist at the University of Vienna, “… principles state that information should be localized in space and time, that systems should be able to encode information about each other, and that every process should in principle be reversible, so that information is conserved.”

This cloud-based quantum computing service includes verification and is now available to members of the IBM Q Network.

IBM and Cambridge Quantum Computing have built a random number generator that uses quantum computing with verification and plan to offer the new capability as a cloud service.

IBM and CQC announced the news Thursday at the final day of the IBM Q Summit. CQC developed the application, which generates true maximal randomness, or entropy.

The world is one step closer to having a totally secure internet and an answer to the growing threat of cyber-attacks, thanks to a team of international scientists who have created a unique prototype that could transform how we communicate online.

The invention led by the University of Bristol, revealed today in the journal Science Advances, has the potential to serve millions of users, is understood to be the largest-ever quantum network of its kind, and could be used to secure people’s online communication, particularly in these internet-led times accelerated by the COVID-19 pandemic.

“Hyperdegeneracy” could be used in quantum computing.


Microscopic oil droplets held aloft with optical tweezers can contain more than 200 resonant optical modes of similar energies, creating “hyperdegeneracy” for the first time. That is the claim of researchers in Israel, Spain and the US, who say that their breakthrough could ultimately find application in high-speed optical communications, sensing, quantum data processing and even the creation of dynamic optical circuits.

When optical materials with a high refractive index are formed into certain symmetrical shapes — such as rings, cylinders or spheres —light can be repeatedly reflected around the inside of the material, much in the same way that sound waves pass around the inside edge of St Paul’s Cathedral’s famous “whispering gallery”. The circulating light undergoes constructive interference, forming discrete resonant modes – or so-called degenerate states – with similar energies.

The number of modes is dependent on the ratio between the light’s wavelength and the circumference of the resonator — meaning that, in theory, a spherical object with a circumference tens of microns in size could support hundreds of modes of either visible or near-infrared light. In practice, however, achieving such hyperdegeneracy has proven impossible with conventional fabrication techniques. This is because even a single stem supporting the sphere will reduce the object’s symmetry and thereby reduce the extent of the potential degeneracy.

Composite fermions are exotic quasi-particles found in interacting 2-D fermion systems at relatively large perpendicular magnetic fields. These quasi-particles, which are composed of an electron and two magnetic flux quanta, have often been used to describe a physical phenomenon known as the fractional quantum Hall effect.

Researchers at Princeton University and Pennsylvania State University recently used composite to test a theory introduced by physicist Felix Bloch almost a century ago, suggesting that at very low densities, a paramagnetic Fermi “sea” of electrons should spontaneously transition to a fully magnetized state, which is now referred to as Bloch ferromagnetism. Their paper, published in Nature Physics, provides evidence of an abrupt transition to full magnetization that is closely aligned with the state theorized by Bloch.

“Composite fermions are truly remarkable,” Mansour Shayegan, professor of Electrical Engineering at Princeton University and one of the researchers who carried out the study, told Phys.org. “They are born of interaction and magnetic flux, and yet they map such a complex system to a simple collection of quasi-particles that to a large degree behave as non-interacting and also behave as if they don’t feel the large magnetic field. One of their most interesting properties is their spin polarization.”

We tackle the crucial challenge of fusing different modalities of features for multimodal sentiment analysis. Mainly based on neural networks, existing approaches largely model multimodal interactions in an implicit and hard-to-understand manner. We address this limitation with inspirations from quantum theory, which contains principled methods for modeling complicated interactions and correlations. In our quantum-inspired framework, the word interaction within a single modality and the interaction across modalities are formulated with superposition and entanglement respectively at different stages. The complex-valued neural network implementation of the framework achieves comparable results to state-of-the-art systems on two benchmarking video sentiment analysis datasets. In the meantime, we produce the unimodal and bimodal sentiment directly from the model to interpret the entangled decision.

O,.o.


This stunning image captured last year by physicists at the University of Glasgow in Scotland is the first-ever photo of quantum entanglement — a phenomenon so strange, physicist Albert Einstein famously described it as ‘spooky action at a distance’.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image was the first time we’d seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Quantum entanglement occurs when two particles become inextricably linked, and whatever happens to one immediately affects the other, regardless of how far apart they are. Hence the ‘spooky action at a distance’ description.