Menu

Blog

Archive for the ‘quantum physics’ category: Page 582

Apr 2, 2018

Finding order in disorder demonstrates a new state of matter

Posted by in categories: materials, quantum physics

Physicists have identified a new state of matter whose structural order operates by rules more aligned with quantum mechanics than standard thermodynamic theory. In a classical material called artificial spin ice, which in certain phases appears disordered, the material is actually ordered, but in a “topological” form.

Read more

Apr 2, 2018

Did Stephen Wolfram’s Knowledge Engine Just Become a Quantum Neural Blockchain AI?

Posted by in categories: bitcoin, quantum physics, robotics/AI

Today’s leading buzzwords seem to describe very separate concepts, but it turns out that they have some amazing commonalities.

Read more

Mar 29, 2018

Microsoft inches closer to commercially-viable quantum computing

Posted by in categories: computing, particle physics, quantum physics

Microsoft’s quest to create a powerful quantum computer comes closer to reality with the help of an elementary particle.

Read more

Mar 29, 2018

Are there extra dimensions lurking at the quantum scale?

Posted by in categories: nanotechnology, quantum physics

Some theories suggest there could be many more dimensions that we’re unaware of, mostly because they’re imperceptibly tiny. Now researchers have taken the search for extra dimensions down to the nanoscale, using a neutron beam to study gravitational forces more precisely than ever before.

Read more

Mar 27, 2018

The future of photonics using quantum dots

Posted by in categories: computing, finance, quantum physics

Fiber-optic cables package everything from financial data to cat videos into light, but when the signal arrives at your local data center, it runs into a silicon bottleneck. Instead of light, computers run on electrons moving through silicon-based chips, which are less efficient than photonics. To break through, scientists have been developing lasers that work on silicon. Researchers now write that the future of silicon-based lasers may be in quantum dots.

Read more

Mar 27, 2018

Future Focus: Quantum Computing in Next Generation AI Research

Posted by in categories: quantum physics, robotics/AI

Dario Gil shares the future of quantum computing.

Read more

Mar 27, 2018

Putting quantum scientists in the driver’s seat

Posted by in categories: computing, quantum physics

Scientists at the Department of Energy’s Oak Ridge National Laboratory are conducting fundamental physics research that will lead to more control over mercurial quantum systems and materials. Their studies will enable advancements in quantum computing, sensing, simulation, and materials development.

The researchers’ experimental results were recently published in Physical Review B Rapid Communication and Optics Letters.

Quantum information is considered fragile because it can be lost when the system in which it is encoded interacts with its environment, a process called dissipation. Scientists with ORNL’s Computing and Computational Sciences and Physical Sciences directorates and Vanderbilt University have collaborated to develop methods that will help them control—or drive—the “leaky,” dissipative behavior inherent in .

Read more

Mar 26, 2018

DARPA Is Researching Time Crystals, And Their Reasons Are ‘Classified’

Posted by in categories: military, neuroscience, quantum physics

The US military likes to stay at the forefront of the cutting edge of science — most recently investigating ways they can ‘hack’ the human brain and body to make it die slower, and learn faste r.

But in an unexpected twist, it turns out they’re also interested in pushing the limits of quantum mechanics. The Defence Advanced Research Projects Agency (DARPA) has announced it’s funding research into one of the strangest scientific breakthroughs in recent memory — time crystals.

In case you missed it, time crystals made headlines last year when scientists finally made the bizarre objects in the lab, four years after they were first proposed.

Continue reading “DARPA Is Researching Time Crystals, And Their Reasons Are ‘Classified’” »

Mar 23, 2018

Scientists unveil high-sensitivity 3D technique using single-atom measurements

Posted by in categories: particle physics, quantum physics

Researchers at Griffith University working with Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) have unveiled a stunningly accurate technique for scientific measurements which uses a single atom as the sensor, with sensitivity down to 100 zeptoNewtons.

Using highly miniaturised segmented-style Fresnel lenses — the same design used in lighthouses for more than a century — which enable exceptionally high-quality images of a single atom, the scientists have been able to detect position displacements with nanometre precision in three dimensions.

“Our atom is missing one electron, so it’s very sensitive to electrical fields. By measuring the displacement, we’ve built a very sensitive tool for measuring electrical forces.” Dr Erik Streed, of the Centre for Quantum Dynamics, explained.

Continue reading “Scientists unveil high-sensitivity 3D technique using single-atom measurements” »

Mar 23, 2018

Researchers find a new material for quantum computing

Posted by in categories: computing, engineering, quantum physics, security

Rumors of commercial quantum computing systems have been coming hot and heavy these past few years but there are still a number of issues to work out in the technology. For example, researchers at the Moscow Institute Of Physics And Technology have begun using silicon carbine to create a system to release single photons in ambient i.e. room temperature conditions. To maintain security quantum computers need to output quantum bits – essentially single photons. This currently requires a supercooled material that proves to be unworkable in the real world. From the release:

Photons — the quanta of light — are the best carriers for quantum bits. It is important to emphasize that only single photons can be used, otherwise an eavesdropper might intercept one of the transmitted photons and thus get a copy of the message. The principle of single-photon generation is quite simple: An excited quantum system can relax into the ground state by emitting exactly one photon. From an engineering standpoint, one needs a real-world physical system that reliably generates single photons under ambient conditions. However, such a system is not easy to find. For example, quantum dots could be a good option, but they only work well when cooled below −200 degrees Celsius, while the newly emerged two-dimensional materials, such as graphene, are simply unable to generate single-photons at a high repetition rate under electrical excitation.

Researchers used silicon carbide in early LEDs and has been used to create electroluminescent electronics in the past. This new system will allow manufacturers to place silicon carbide emitters right on the quantum computer chips, a massive improvement over the complex systems used today.

Continue reading “Researchers find a new material for quantum computing” »