Menu

Blog

Archive for the ‘quantum physics’ category: Page 579

Mar 5, 2018

Google’s new Bristlecone processor brings it one step closer to quantum supremacy

Posted by in categories: information science, quantum physics, robotics/AI

Every major tech company is looking at quantum computers as the next big breakthrough in computing. Teams at Google, Microsoft, Intel, IBM and various startups and academic labs are racing to become the first to achieve quantum supremacy — that is, the point where a quantum computer can run certain algorithms faster than a classical computer ever could. Today, Google said that it believes that Bristlecone, its latest quantum processor, will put it on a path to reach quantum supremacy in the future.

The purpose of Bristlecone, Google says, it to provide its researchers with a testbed “for research into system error rates and scalability of our qubit technology, as well as applications in quantum simulation, optimization, and machine learning.

Continue reading “Google’s new Bristlecone processor brings it one step closer to quantum supremacy” »

Mar 4, 2018

Elusive Higgs-Like State Created in Exotic Materials

Posted by in categories: materials, quantum physics

Two teams of physicists have figured out how to create a “mini universe,” which could help researchers understand the strange behavior of deeply quantum systems.

Read more

Mar 3, 2018

Three-dimensional skyrmion: Scientists observe theoretical particle for first time

Posted by in categories: particle physics, quantum physics

March 2 (UPI) — Forty years after scientists first theoretically predicted the existence of a three-dimensional skyrmion, scientists have observed the particle in the lab.

The particle, observed cold quantum gas, isn’t a normal particle composed of electrons, protons and electrons. It is a quantum particle, the energy signature created by the interactions between a particle and the surrounding system.

Continue reading “Three-dimensional skyrmion: Scientists observe theoretical particle for first time” »

Mar 3, 2018

Scientists observe a new quantum particle with properties of ball lightning

Posted by in categories: climatology, nuclear energy, particle physics, quantum physics

Scientists at Amherst College and Aalto University have created, for the first time a three-dimensional skyrmion in a quantum gas. The skyrmion was predicted theoretically over 40 years ago, but only now has it been observed experimentally.

In an extremely sparse and cold , the physicists have created knots made of the magnetic moments, or spins, of the constituent atoms. The knots exhibit many of the characteristics of , which some scientists believe to consist of tangled streams of . The persistence of such knots could be the reason why ball lightning, a ball of plasma, lives for a surprisingly long time in comparison to a lightning strike. The new results could inspire new ways of keeping plasma intact in a stable ball in fusion reactors.

‘It is remarkable that we could create the synthetic electromagnetic knot, that is, quantum ball lightning, essentially with just two counter-circulating electric currents. Thus, it may be possible that a natural ball lighting could arise in a normal ,’ says Dr Mikko Möttönen, leader of the theoretical effort at Aalto University.

Continue reading “Scientists observe a new quantum particle with properties of ball lightning” »

Mar 3, 2018

Scientists create ‘quantum ball lightning’ for the first time

Posted by in categories: climatology, nuclear energy, particle physics, quantum physics

Scientists create ‘quantum ball lightning’ in the lab in breakthrough that could pave the way for stable fusion reactors…


In the new research, led by scientists at Amherst College and Aalto University, the team created a three-dimensional skyrmion in an extremely cold quantum gas.

Continue reading “Scientists create ‘quantum ball lightning’ for the first time” »

Mar 2, 2018

The ‘Impossible’ Quantum Space Engine That Breaks Laws of Physics

Posted by in categories: quantum physics, space travel

A couple of years ago, researchers at NASA’s Johnson Space Centre discovered a thruster system which actually generates thrust, despite requiring absolutely no propellant. The implications of this discovery are far-reaching; applications for space flight and other technologies which require propulsion could one day become far cheaper, allowing space exploration to expand exponentially.

The existence of this technology also further validates the fact that energy can be derived from tapping into the quantum vacuum, also known as “zero-point.”

Read more

Mar 2, 2018

The Ongoing Battle Between Quantum and Classical Computers

Posted by in categories: computing, information science, quantum physics

The quest for “quantum supremacy”—unambiguous proof that a quantum computer does something faster than an ordinary computer—has paradoxically led to a boom in quasi-quantum classical algorithms.

Read more

Feb 26, 2018

Chinese satellite uses quantum cryptography for secure video conference between continents

Posted by in categories: encryption, quantum physics, satellites

Quantum cryptography has never been possible over long distances. But the first quantum communications satellite is rewriting the record books.

    Read more

    Feb 26, 2018

    Quantum Memory Storage is More Efficient and Secure Than Ever

    Posted by in categories: computing, quantum physics

    A new technique has raised the success rate of quantum memory storage from 30 to 70 percent. This leap in quantum computing could propel us closer to a future that connects us through ultra-secure quantum networks.

    Read more

    Feb 26, 2018

    Why Quantum Computers Will Be Exponentially Faster Than Digital Computers

    Posted by in categories: computing, quantum physics

    Check out this week’s episode of Singularity Hub’s video series, Tech-x-planations, to learn more about what a quantum computer really is.

    Read more